Generalizable Novel-View Synthesis using a Stereo Camera

Supplementary Material

A. Overview

In this supplementary document, we provide:
* additional implementation details (Sec. B),
* details on experimental settings (Sec. C),

* additional analyses (Sec. D),

e details on the StereoNVS dataset (Sec. E),
* additional quantitative results (Sec. F), and
* additional qualitative results (Sec. G).

B. Implementation Details for StereoNeRF
B.1. Stereo estimation network

We employ UniMatch [14] as the stereo estimation network
in our framework. The stereo estimation network S outputs
multiple depths during its refinement stage:

@hah=sm.
where k € {1,--- , K},

where K (set to 7) is the total number of outputs. Through-
out the paper, we use (d ;,d? ) to indicate (d:f , d?)’g )
for simplicity, where (d™ ), d?g) are the final outputs.
These multiple outputs are supervised using the stereo depth
loss, which will be explained in Sec. B.4. Refer to [14] for

more details about the stereo estimation network.

B.2. Stereo Feature Extractor

We provide additional details of the network architecture
of the stereo feature extractor. To extract image features
from input images, we modify the feature extractor from
GeoNeRF [6] as follows: (1) We make the CNN encoder to
project each of a stereo image pair (I}, I7) to feature maps.
(2) We introduce the stereo attention module (SAM) [2] to
fuse feature maps from the input stereo image pair. (3) We
further extend SAM to aggregate stereo correlated features
(13 5.

We utilize the Feature Pyramid Network (FPN) for both
the CNN encoder and the CNN decoder within the stereo
feature extractor, as done in GeoNeRF. The CNN decoder
takes the fused feature maps from SAM as inputs and gen-
erates stereo image features with three different scales. We
denote the multi-scale stereo image features as ( fZ"l, fg’l),
where [ is a scale index such that | € {0,1,2}. fZ’Q has
the same size as 17, while f}"° and f}"" have resolutions
of 1/4 and 1/2, respectively. These multi-scale stereo image
features will be utilized to build multi-scale cost volumes in
subsequent feature volume construction Sec. B.3.

B.3. Depth-guided Feature Volume Construction

We provide a detailed description for the depth-guided fea-
ture volume construction (Sec. 3.2). We adopt the cascaded
cost volume strategy [4] of GeoNeRF [6] for constructing
feature volumes. The feature volumes provide occlusion-
aware geometric information for conditioning the neural
renderer. To obtain fine and high-resolution feature vol-
umes, cost volumes are built in a coarse-to-fine manner with
three steps. Then, we introduce our depth-guided plane-
sweeping (DGPS) in the initial step of the cascaded cost
volume strategy. In the following, we explain the cascaded
cost volume strategy first, followed by the incorporation of
DGPS in this strategy.

The initial stage of the cascaded cost volume strategy be-
gins by establishing the depth range using predefined near
and far depths, denoted as dpeqr and dyq,, respectively.
Depth planes are then hypothesized by uniformly divid-
ing the entire depth range by a predetermined number of
depth planes, denoted as M. The interval between consec-
utive depth planes is determined as W during this
initial stage. On these depth planes, plane-sweeping aggre-
gates the coarsest-scale multi-view features ( fZ’O, fg’o) to
build the initial-stage cost volumes. Then, the MV S network
produces the initial-stage feature volumes (¢}°, ¢7°) and
the initial-stage depth maps (d:;?L, dZL’?R) from these initial-
stage cost volumes.

Next, for the cost volume construction in the subsequent
stages, we hypothesize depth planes around the depths ob-
tained from the previous stage and perform plane-sweeping
on these depth planes to aggregate finer-scale multi-view
features (f]", fg’l). The plane interval of the finer-scale
cost volume is reduced to 1/2 compared to that of the pre-
vious stage. The feature volumes and depth maps for each
stage are obtained via the MVS network, similar to the ini-
tial stage. We denote the resulting multi-scale feature vol-
umes and depth maps as (¢}, ¢5') and (dﬁ;fL7 d:;fR), re-
spectively. We utilize individual UNet for the MVS network
at each stage. The number of hypothesis depth planes M for
each stage is set to 48, 32, and 8, respectively. The resolu-
tion of dl?{fL are the same as f]"".

However, using only the cascaded cost volume strategy
might not ensure accurate geometry estimation, especially
when the initial depth estimation is not precise. Inaccurate
depth estimation may hinder the subsequent construction of
feature volumes around the real geometry. Since the predic-
tion of NeRF relies on these feature volumes, the neural ren-
derer predicts inaccurate geometry when feature volumes
are not constructed around the real geometry. To tackle this



issue, we introduce DGPS in the first stage of this strat-
egy. Unlike the previous approach that hypothesizes depth
planes across the entire depth range, DGPS hypothesizes
depth planes around the stereo depth (df 1, d ) obtained
from the stereo estimation network. Leveraging the reliable
stereo depth, DGPS ensures feature volume construction
around the geometry, as explained in Sec. 5.3.

B.4. Stereo Depth Loss

We provide detailed explanation of Eq. 3 in the main paper:
L% and L' are computed in a pixel-wise manner, and L},
is computed in a ray-wise manner. Specifically, £ and L7}
are defined as:
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where g(d, dg.) represents the distance between the esti-
mated depth maps d and the pseudo-ground-truth depth
maps dg¢. K is the total number of depth predictions and
v (set to 0.9) is the weight to give higher weights for later
depth prediction (Sec. B.1). dg, ; and di, p are pseudo—

ground-truth depth maps of I} and I}, respectively. d.; o, L

and dgtf r are the downsampled versions of dg, ; and dj,
according to the scale level [, respectively.
The distance function g is defined as:

g(d,dg) = Zmzy H

where (,7) is a pixel coordinate, and m(i,j) is a mask
for the pixel (7, j). The distance function computes the dif-
ference between the inverses of depth values. The mask
m(i,7) is introduced to account for errors in the pseudo-
ground-truth depth map. Specifically, we define m (i, j) = 1
if dg: (4, j) falls within the boundaries defined by the near
and far depth range from COLMAP [10], and m(i,5) = 0
otherwise. For the norm || - ||, we use a smooth L; norm.

Among the loss terms of the stereo depth loss, £}, is de-
fined as follow:

Li=_m(r) Hd(lr) B dgtl(r)

reR

dye(i j) ) (S4)

, (S5)

where R denotes set of rays in each training batch, and
m(r) is a mask for ray r. m(r) is defined in the same way
as m(i, 7).

B.5. Training Details for StereoNeRF

We set the balancing weights )\Zelf and A\3/°"¢° in Eq. 2
as 0.1 and 1.0, respectively. For the stereo depth loss

Lsteree in Eq. 3, we set A1, Ao, and Az as 0.1, 0.1,
and 1.0, respectively. The image resolution for training
and evaluation is 512 x 256 for both the StereoNVS-
Real and the StereoNVS-Synthetic datasets. We use Uni-
Match [14] pre-trained on several mixed public datasets,
which is used for all the mentioned pre-trained stereo
estimation networks in our framework. Specifically, we
employ the configuration of ‘GMStereo-scale2-regrefine3-
resumeflowthings-mixdata® from the official UniMatch
website  (https://github.com/autonomousvision/unimatch).
We use CasMVSNet [4] pre-trained on BlendedMVS [15]
for our MVS network, as done in GeoNeRF [6]. The train-
ing takes 5 days using one RTX3090 GPU.

B.6. Computing Depth from Disparity

We utilize the stereo estimation network to obtain pseudo-
ground-truth depth dy; and stereo depths d,. Specifically,
we employ UniMatch [14] for the stereo estimation net-
work, which estimates disparities from input stereo-image
pairs. If the focal length and the baseline length between
the stereo image pair are known, depths can be computed
from the estimated disparities as follows:

b
LY (S6)
disp

where d, b, f, and disp denote depth, baseline length, focal
length, and disparity, respectively. We use the pre-computed
values for the baseline length and the focal length (Sec. E).

C. Experimental Settings
C.1. Training Details for Baselines

We train the baseline methods: SRF [1], IBRNet [12],
GNT [11], GeoNeRF [6], and NeuRay [7] on the training
set of the StereoNVS-Real dataset. We use 512 rays for the
training batch except for GNT. All the models are trained
for 250K iterations.

SRFE. For SRF [1], we use official PyTorch implementa-
tion from https://github.com/jchibane/srf. For training, we
use the Adam optimizer with learning rate of 0.0005 and
the exponential decay strategy for learning rate scheduling.

IBRNet. For IBRNet [12], we use official PyTorch im-
plementation from https://github.com/googleinters/IBRNet.
For training, we use the Adam optimizer with learning rates
of 0.001 and 0.0005 for feature extraction and rendering
network, respectively. we use the exponential decay strat-
egy for learning rate scheduling.

GNT. For GNT [11], we use official PyTorch imple-
mentation from https://github.com/VITA-Group/GNT. For
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(a) Scene | - (b) from off-the-shelf stereo estimétor

(c) from partially-trained stereo estimator

Figure S1. Improved depth estimation accuracy thanks to our partial training scheme for the stereo estimation network. Without partial
training scheme, the off-the-shelf stereo estimation network [14] predicts depths with an incorrect scale.

training, we use the we use the Adam optimizer with learn-
ing rates of 0.001 and 0.0005 for feature extraction and ren-
dering network. we use the exponential decay strategy for
learning rate scheduling. Since GNT employs large trans-
former backbone, we use 2048 rays for its training batch.

GeoNeRF. For GeoNeRF [6], we use official PyTorch im-
plementation from https://github.com/idiap/GeoNeRF. For
training, we use the Adam optimizer with learning rates of
0.0005 and the cosine-annealing scheduling. We use Cas-
MVSNet [4] pre-trained on BlendedM VS [15] for the MVS
network of GeoNeRF.

NeuRay. For NeuRay [7], we use official PyTorch im-
plementation from https://github.com/liuyuan-pal/NeuRay.
For training, we use the Adam optimizer with learning rates
of 0.0002 and the exponential decay strategy for learning
rate scheduling.

C.2. Experimental Details for Analysis

We provide additional details for experiments in Sec. 5.3.2
and Sec. 5.3.3 in the main paper.

C.2.1 Effectiveness of Depth-Guided Plane-Sweeping

Tab. 4 in the main paper shows the results using more depth
planes for cascaded cost volume construction. As DGPS is
applied in the first stage of the cascaded cost volume ap-
proach, we utilize 96 depth planes in the first stage for the
additional model. Note that we use 48 depth planes in the
first stage for all the other models.

C.2.2 Benefit of Stereo Estimation in Depth Loss

Tab. 5 in the main paper shows the effectiveness of utilizing
stereo estimation networks for depth supervision. To obtain
dyi®, we use UniMVSNet [9], one of the state-of-the-art
MYVS network, which is trained on the DTU dataset [5] and
the BlendedMVS dataset [15].

[PSNR (1) SSIM (1) LPIPS (}) ABS ()
Model w/o partial training scheme| 32.52 09252  0.1299  0.1287
Our final model 3345 09336 0.1203 0.1056

Table S1. Effectiveness of our partial training scheme for robust
depth estimation of the stereo estimation network.

D. Additional Analyses on StereoNeRF
D.1. Robustness to Stereo Depth Error

In our experimental setup, we utilize pseudo-ground
truth stereo depth maps estimated from an off-the-shelf
model [14] for NeuRay [7], GeoNeRF, p [6], and our pro-
posed method. Since NeuRay and GeoNeRF, p rely on
depth without considering potential errors, they are not ro-
bust to depth inaccuracies. As shown in Tab. 1 in the main
paper, these methods report significantly degraded results in
real-world scenes where obtaining error-free depth proves
challenging. However, our approach circumvents this is-
sue by incorporating partial training of the stereo estima-
tion network within the stereo feature extractor, leverag-
ing multi-view supervision (Sec. 3.4 in the main paper).
This training scheme ensures robust depth estimation of
the stereo estimation network, subsequently utilized in our
DGPS, resulting in consistent performance regardless of the
dataset. In the following discussion, we present additional
experiments to further demonstrate the robustness of our
method to depth errors.

Fig. S1 (b) shows such estimation errors where an
off-the-shelf depth estimation model inaccurately predicts
depths with incorrect scales. For example, the depth of dis-
tant regions is often inaccurately estimated to be closer to
the camera. This erroneous depth estimation negatively af-
fects the performance of GeoNeRF, p and NeuRay, par-
ticularly in real-world scenes (Tab. 1 in the main paper).
However, our proposed solution, explained in Sec. 3.4 in the
main paper, effectively mitigates this issue by incorporating
partial training of the stereo estimation network.

To demonstrate the effectiveness of our partial training
scheme of the stereo estimation network, we conduct an
additional experiment. Specifically, we train an additional
model, which is our final model with frozen parameters of
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Crop Ratio|Method ~ [PSNR (1) SSIM (1) LPIPS ({)
1 GeoNeRF®)| 2877  0.907  0.139
Ours 28.44  0.900  0.140

12 |GeoNeRF®)| 28.87  0.923  0.094
Ours 28.84 0.924 0.085

173 |GeoNeRE®| 29.09 0926  0.093
Ours 2923 0931  0.080

Table S2. Comparison stereo-camera setting against monocular-
view setting with center-cropping strategy.

the stereo estimation network. We then compare the ad-
ditional model with our final model based on both image
and shape qualities. Tab. S1 presents the results, indicat-
ing a slight decline in performance for the additional model
compared to our final model employing the partial training
scheme.

This slight performance decline can be attributed to two
main factors. Firstly, the use of inaccurate depth in DGPS
results in the misplacement of feature volumes, deviat-
ing from the actual geometry. This misalignment, in turn,
leads to inaccurate geometry estimation by the neural ren-
derer, negatively impacting view synthesis performance.
Secondly, as we use rendered depth as ground truth for
Lflelf , the depth error introduced by the neural renderer can
destabilize our framework’s training process. In contrast,
our proposed partial training scheme enhances the stereo
estimation network’s ability to estimate depth with precise
scale (Fig. S1 (c)). It is because this training scheme makes
our stereo estimation network more robust to differences
in dataset characteristics. Therefore, DGPS with more ac-
curate depth ensures the construction of feature volumes
around real geometry, ultimately leading to improved ge-
ometry estimation by the neural renderer. This enhanced
accuracy contributes to stable training, leading to better per-
formance.

D.2. Comparison Between Monocular-Camera and
Stereo-Camera Settings

We conduct further evaluation of the effectiveness of the
stereo-camera setting by comparing our method with a
baseline model [6], which is trained on six views (i.e., SiX
images) in a monocular setting. Tab. 2 in the main paper
already demonstrates that our proposed method, trained on
three stereo-camera pairs (i.e., six images), outperforms the
baseline method trained on three views (i.e., three images)
in the monocular setting. To provide a more comprehensive
comparison, we present an additional experiment compar-
ing the monocular-camera and stereo-camera settings using
the same number of images (i.e., six images).

In this experiment, we compare our method against the
baseline method, GeoNeRF [6], specifically a variant de-
noted as GeoNeRF(®) | which utilizes six monocular images

in the inference. These six monocular images are obtained
by selecting the left-side images from six stereo-camera im-
age pairs. Note that leveraging six monocular views signif-
icantly broadens the observation of spatial views. To miti-
gate the impact of unobserved spatial regions in the evalu-
ation, we compute errors by comparing center-cropped re-
gions of both synthesized and ground-truth images.

As shown in Tab. S2, leveraging additional spatial views,
GeoNeRF(©) achieves better results than our method. How-
ever, employing a 1/2 center-cropping strategy in the com-
parison, our method shows comparable or slightly better re-
sults than GeoNeRF (%) In addition, employing a 1/3 center-
cropping strategy, our method surpasses GeoNeRF(®).
These results underscore the effectiveness of our method,
particularly in the observed region.

D.3. Choice of Stereo Estimation Network

In our framework, we adopt UniMatch [14] as the stereo
estimation network due to its generalization capability. This
capability is attributed to its training on a large-scale stereo-
image dataset, which endows UniMatch with the ability to
generalize well across various datasets. Consequently, our
framework benefits from this high generalization capacity,
leading to superior performance. To validate the relation-
ship between the performance of our framework and the
generalization capability of the stereo estimation network,
we conduct an experiment comparing our final model with
another model employing a different stereo estimation net-
work.

This alternative model utilizes a stereo estima-
tion network that has the identical network architec-
ture to the stereo estimation network in our final
model but is trained on the SceneFlow dataset [8].
Specifically, we utilize the “GMStereo-scale2-regrefine3-
sceneflow” configuration from the official UniMatch web-
site  (https://github.com/autonomousvision/unimatch) for
the stereo estimation network. Since the SceneFlow dataset
is notably smaller in size compared to the large-scale dataset
used to train our final model, this alternative model lacks the
generalization ability demonstrated by our final model.

We compare the performances of our final model and
this alternative model on the StereoNVS-Synthetic dataset.
As shown in Tab. S3, our final model outperforms this al-
ternative model across various metrics. This result under-
scores the correlation between the generalization ability of
the stereo estimation network and the performance of our
framework. Furthermore, we anticipate that incorporating a
more refined stereo estimation network into our framework
has the potential to further enhance performance.

E. StereoNVS dataset

Fig. S2 shows example scenes in the StereoNVS-Real and
the StereoNVS-Synthetic datasets.
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StereoNeRF-Real

Figure S2. The StereoNVS datasets. The StereoNVS dataset presents multi-view stereo-pair images for both real-world and synthetic
scenes. These images are part of the entire dataset.

PSNR (1) SSIM (1) LPIPS ({) ABS ({)
Model w/ small-dataset-trained stereo network| 31.73  0.9026  0.1637 0.2207
Our final model 3345 0.9336 0.1203 0.1056

Table S3. Experiment on the choice of the stereo estimation net-
work in our framework.

For the StereoNVS-Real, the baseline length is around
8.8cm and the focal length is around 1568 pixels. These
values vary slightly for each scene due to the scale am-
biguity induced by the structure-from-motion approach of
COLMAP for camera pose acquisition. When capturing the
real-world scenes, we manually fixed the stereo camera’s
focal length, exposure time, gain, gamma correction, and
white balance for each scene. In addition, since acquired
images have a stereoscopic constraint with fixed camera po-
sitions and orientations, we employed the “RigBundleAd-
juster” configuration in COLMAP [10] to ensure the stereo-
scopic constraint during the camera pose acquisition.

For the StereoNVS-Synthetic, the baseline length and
the focal length are 8cm and 711 pixels, respectively. We

randomly sampled 50 synthetic scenes from the 3D-Front
dataset [3]. For each scene, we generated 200 viewpoints of
stereo image pairs, which are constrained to look at a spe-
cific object like furniture. Then, we filtered camera view-
points placed too close to the objects in the scene.

F. Additional Quantitative Results
F.1. Depth Quality Assessment

We assess the depth quality using additional depth metrics
such as absolute error (ABS), absolute relative error (ARE),
and root mean square error (RMSE). Tab. S4 presents depth
quality evaluation for our method and all the baseline meth-
ods [6, 7, 11, 12] on the StereoNVS-Synthetic dataset. The
result reveals similar trends to those using ABS in the Tab. 1
in the main paper. Our method shows comparable depth
quality to GeoNeRF, p, although GeoNeRF, p explicitly
uses depth maps in the inference.



Method |ABS (J) ARE () RMSE ({)
SRF 0.8125 04673 1.1347
IBRNet | 0.2628 0.1408 0.5137
GeoNeRF | 0.1577 0.0933  0.3631
GNT | 04512 0.1945 0.6593

GeoNeRF; p| 0.0782 0.0576  0.2301
NeuRay | 0.1571 0.0852 0.3636
Ours | 0.1056 0.0725 0.2656

Table S4. Depth quality assessment using additional depth metrics.
We compare our method against the baseline methods [1, 6,7, 11,
12]. Our method shows comparable depth quality to GeoNeRF p,
although GeoNeRF p explicitly uses depth maps in the inference.

F.2. Evaluation on the BlendedMVS Dataset

We evaluate our model on the BlendedMVS dataset [15].
Since BlendedMVS do not provide stereo-camera im-
ages, we were not able to evaluate our model directly on
BlendedMVS, which is released on the official website
(https://github.com/YoYo000/BlendedMVS). Nonetheless,
while BlendedM VS does not directly provide stereo-camera
images, it still provides 3D meshes. Thus, we conducted
an additional evaluation by rendering stereoscopic images
from the meshes. For this evaluation, we classify large
scenes based on the information available on the website
(https://github.com/kweal23/BlendedM VS _scenes). Then,
we sample several scenes from these categorized scenes.
The list of the names for the sampled scenes is as follows:

¢ ‘5aa515e613d42d091d29d300°,

e ‘5bf18642c50e6f7f8bdbd492¢,

e ‘5af02e904c8216544b4ab5a2‘,

¢ ‘5b69cc0cb44b61786eb959bf*,

e ‘5bfc9dSaec61caldd69132a2¢,

¢ ‘5b08286b2775267d5b0634ba‘,

e ‘5ba75d79d76ffa2c86cf2f05°,

e ‘58eafl1513353456af3a1682a‘, and
e ‘5af28cea59bc705737003253.

Tab. S5 shows that our method outperforms other base-
line methods [1, 6, 7, 11, 12] on the BlendedMVS dataset.
Given the complex structures in scenes from BlendedM VS,
these results highlight the effectiveness of our method, par-
ticularly in such settings. In addition, SRF [1] and GNT [11]
demonstrate significantly degraded performances on Blend-
edMVS due to their limited generalization capabilities.

F.3. Evaluation Using Per-scene Metrics

Tab. S6 presents per-scene evaluaion using mean and
variance of PSNR, SSIM [13], and LPIPS [16] on the
StereoNVS-Real test set. Our method mostly shows better
performance than the baseline methods [0, 7, 11, 12].

Method  |[PSNR(T) SSIM(T) LPIPS(}) ABS (}) ARE (1) RMSE (]
SRF 1393 02251 0.6866 39.74 05952  50.96
IBRNet | 21.68 06758 03191 7.726 0.1539 15.86
GeoNeRF | 2331 07635 02426 4552 0.0769 1145
GNT 1158 02459 0.7675 2331 04636 32.04
GeoNeRF, | 23.67 07390 02618 3434 0.0473  8.011
NeuRay | 2329 07271 02700 3358 00634 8.861
Ours 2408 07842 02301 3.275 00572 8.452

Table S5. Evaluation on the BlendedMVS dataset [15]. We quan-
titatively compare our method against the baseline methods [1, 6,
7,11, 12].

G. Additional Qualitative Results

We present an additional qualitative comparison of
StereoNeRF with other baseline methods: IBRNet [12],
GNT [11], GeoNeRF [6], and NeuRay [7].

Fig. S3 presents novel-view rendering results with whole
images and depths for the StereoNVS-Real dataset. Our
method shows the best image quality, along with the ac-
curately estimated depth maps. While GeoNeRF, p seems
to produce depth results comparable to our method, their
synthesized images show artifacts, especially for the ob-
ject boundary regions. It is because they utilize the pseudo-
ground-truth depths in its inference without considering the
error. Additionally, we present the rendering results of di-
verse scenes in the both StereoNVS-Real and StereoNVS-
Synthetic datasets. Fig. S4 shows zoomed-in patches, where
other baseline methods synthesize degenerated images, es-
pecially for thin structures and textureless regions.
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(mean,var) Scene #3 Scene #11 Scene #13 Scene #25 Scene #26 Scene #30 Scene #38 Scene #40
IBRNet (26.58,1.5) | (27.19,1.4) | (21.32,5.6) | (28.52,3.5) | (28.41,2.8) | (23.32,4.7) | (27.50,1.6) | (26.41,1.7)
GeoNeRF (28.40,2.7) | (28.81,1.8) | (22.88,4.5) | (30.46,2.6) | (30.23,3.2) | (24.93,4.6) | (30.05,2.2) | (28.60, 2.6)
GNT (26.00, 1.2) | (27.17,1.5) | (21.38,3.5) | (28.86,2.9) | (28.61,1.7) | (23.30,4.5) | (27.51,1.1) | (25.96, 2.6)
GeoNeRF, p | (27.12,2.4) | (26.50,1.0) | (21.54,3.2) | (28.26,3.4) | (29.00,1.9) | (23.32,2.8) | (27.64,1.1) | (27.59, 0.8)
NeuRay (27.73,2.2) | (27.61,1.8) | (21.54,3.2) | (28.26,3.4) | (29.00,1.9) | (23.32,2.8) | (27.64,1.1) | (27.59,0.8)
Ours (28.87,2.6) | (29.35,2.2) | (22.85,4.5) | (30.82,2.4) | (30.76,3.8) | (25.37,5.0) | (30.50,2.2) | (29.33,2.4)
(a) PSNR
(mean,var) Scene #3 Scene #11 Scene #13 Scene #25 Scene #26 Scene #30 Scene #38 Scene #40
IBRNet (0.8133, 0.0007)|(0.8953, 0.0004)|(0.8386, 0.0038)|(0.8729, 0.0010)|(0.8239, 0.0009) |(0.8491, 0.0018)|(0.7850, 0.0007)|(0.8675, 0.0005)
GeoNeRF  |(0.8669, 0.0005)((0.9210, 0.0002)|(0.8704, 0.0019)((0.9173, 0.0003)|(0.8801, 0.0005){(0.8897, 0.0013)|(0.8967, 0.0011)|(0.9034, 0.0005)
GNT (0.8077, 0.0005)|(0.8977, 0.0002)|(0.8516, 0.0018)|(0.8802, 0.0006)|(0.8363, 0.0007)((0.8518, 0.0016)|(0.7999, 0.0009) |(0.8205, 0.0009)
GeoNeRF, j[(0.8283, 0.0006)|(0.8728, 0.0003)|(0.7371, 0.0023)|(0.7944, 0.0015)|(0.8042, 0.0013){(0.7946, 0.0019)|(0.8533, 0.0008)|(0.8761, 0.0004)
NeuRay (0.8515, 0.0006)|(0.8993, 0.0003)|(0.8369, 0.0019)(0.8736, 0.0011)|(0.8534, 0.0004)((0.8570, 0.0011)|(0.7860, 0.0007)|(0.8864, 0.0002)
Ours (0.8726, 0.0005)|(0.9254, 0.0002)|(0.8699, 0.0021)(0.9240, 0.0002)|(0.8917, 0.0006) |(0.8993, 0.0010) |(0.9056, 0.0009)|(0.9135, 0.0004)
(b) SSIM

(mean,var) Scene #3 Scene #11 Scene #13 Scene #25 Scene #26 Scene #30 Scene #38 Scene #40
IBRNet (0.2812, 0.0007)|(0.1811, 0.0008)(0.1744, 0.0020)|(0.1729, 0.0009)|(0.2400, 0.0013)|(0.1889, 0.0011)|(0.2144, 0.0009)|(0.2349, 0.0009)
GeoNeRF  [(0.1931, 0.0010){(0.1221, 0.0001){(0.1343, 0.0009){(0.1139, 0.0003){(0.1658, 0.0009){(0.1513, 0.0011){(0.1160, 0.0003){(0.1832, 0.0006)
GNT (0.3189, 0.0007)|(0.2026, 0.0008)|(0.1741, 0.0012)|(0.1881, 0.0008)|(0.2672, 0.0011)|(0.2043, 0.0014)|(0.2262, 0.0012)|(0.2643, 0.0014)
GeoNeRF, j[(0.2305, 0.0014)|(0.1626, 0.0002)|(0.2691, 0.0013)|(0.1988, 0.0009)|(0.2100, 0.0006)|(0.2324, 0.0017){(0.1502, 0.0004)|(0.2079, 0.0003)
NeuRay (0.2389, 0.0011)(0.1581, 0.0006)|(0.1770, 0.0012)|(0.1675, 0.0010)(0.1914, 0.0006) |(0.1771, 0.0009) |(0.2154, 0.0008)|(0.1868, 0.0006)
Ours (0.1963, 0.0012)|(0.1173, 0.0002) |(0.1329, 0.0012)|(0.1081, 0.0003)|(0.1482, 0.0007) |(0.1428, 0.0007)|(0.1094, 0.0004)|(0.1749, 0.0005)

(c) LPIPS

Table S6. Evaluation using per-scene mean and variance of PSNR, SSIM, and LPIPS on the StereoNVS-Real test set.
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Figure S3. Qualitative comparison of novel-view synthesis on the StereoNVS-Real dataset. All models are trained using stereo images.
Our method outperforms the baseline methods [6, 7, 11, 12] for both image and depth qualities.



GeoNeRF, NeuRay Ours

GeoNeRF+D ; Ours

Figure S3. Qualitative comparison of novel-view synthesis on the StereoNVS-Real dataset. All models are trained using stereo images.
Our method outperforms the baseline methods [6, 7, 11, 12] for both image and depth qualities.
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Figure S4. Qualitative comparison of novel-view synthesis on the StereoNVS-Real and StereoNVS-Synthetic datasets. All models are

trained using stereo images. Our method surpasses the baseline methods [6, 7, 11, 12], especially for thin structures and textureless regions.
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