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Abstract

In this paper, we propose the first generalizable view syn-
thesis approach that specifically targets multi-view stereo-
camera images. Since recent stereo matching has demon-
strated accurate geometry prediction, we introduce stereo
matching into novel-view synthesis for high-quality geome-
try reconstruction. To this end, this paper proposes a novel
framework, dubbed StereoNeRF, which integrates stereo
matching into a NeRF-based generalizable view synthesis
approach. StereoNeRF is equipped with three key compo-
nents to effectively exploit stereo matching in novel-view
synthesis: a stereo feature extractor, a depth-guided plane-
sweeping, and a stereo depth loss. Moreover, we propose
the StereoNVS dataset, the first multi-view dataset of stereo-
camera images, encompassing a wide variety of both real
and synthetic scenes. Our experimental results demonstrate
that StereoNeRF surpasses previous approaches in general-
izable view synthesis.

1. Introduction
Novel-view synthesis is a long-standing ill-posed problem
in computer vision and graphics, which is inherently chal-
lenging due to the necessity of predicting both the geometry
and texture from images of a target scene. Recently, Neural
Radiance Fields (NeRF) [24] have achieved photorealistic
results by jointly optimizing geometry and radiance fields
with a coordinate-based network. However, the need for
per-scene optimization, which has to learn representations
for each target scene individually, restricts its applicability,
as it requires additional training time for such optimization.

Recent approaches [2, 4, 16, 21, 30, 32, 33, 38] have
addressed this issue of synthesizing novel-view images on-
the-fly for unseen scenes without per-scene optimization.
Early studies [4, 33, 38] utilize an image encoder to train a
generic view interpolation function, enabling the estimation
of NeRF parameters from unseen input images in a feed-
forward manner. However, this single feed-forward man-
ner for estimating geometry and color exacerbates the ill-
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Figure 1. Novel-view synthesis results of a baseline method [16]
and ours. The baseline shows degraded performances, even trained
using stereo-camera images (b). In contrast, fully exploiting
stereo-camera images, our method shows superior results (c).

posedness, resulting in low-quality geometries and render-
ing results. For better geometry reasoning, MVSNeRF [2]
and GeoNeRF [16] leverage the multi-view stereo (MVS)
approach to handle occlusions in a 3D scene. Nonetheless,
they struggle with inaccurate geometry prediction and lim-
ited synthesis accuracy, as shown in the synthesis result of
GeoNeRF (Fig. 1 (a)).

To tackle this challenge, we propose the first general-
izable NeRF approach that leverages stereo-camera im-
ages, which are easily accessible thanks to the ubiquity of
stereo cameras in most mobile devices. Recent advance in
learning-based stereo estimation has demonstrated accurate
geometry prediction, often even outperforming learning-
based MVS methods as shown in Fig. 2. The superior per-
formance of stereo estimation can be attributed to several
key factors. First, unlike MVS that assumes arbitrary num-
ber of inputs with arbitrary camera positions and orien-
tations, stereo matching assumes two stereo inputs with
a fixed baseline. This constraint allows a more optimal
network architecture that can effectively find dense corre-
spondences between input images, and significantly eases
the training difficulty. Moreover, larger scale of stereo-
matching datasets [12, 23, 27] compared to MVS datasets
has facilitated remarkable generalization capabilities in
stereo estimation network. Therefore, we aim to harness
this accurate geometric information from stereo images to
alleviate the ill-posedness of generalizable view synthesis.



MVS StereoScene

Figure 2. Usefulness of exploiting binocular stereo. Comparison
on depth estimation between a learning-based MVS method [26]
and a learning-based binocular stereo method [35].

However, since previous methods do not explicitly con-
sider stereoscopic inputs, they cannot leverage the afore-
mentioned benefits, resulting in degenerated performances
shown in Fig. 1 (b) despite using stereo-camera images.

This paper proposes StereoNeRF, a novel generalizable
view synthesis framework leveraging stereo images. Stere-
oNeRF integrates stereo matching into NeRF-based gener-
alizable view synthesis approach, where the stereo match-
ing provides vital geometric information. To this end, we
first introduce a stereo feature extractor, which extracts
geometry-aware features by correlating horizontal epipolar
lines within stereo images. In addition, the stereo feature
extractor takes advantage of stereo-correlated features from
an off-the-shelf stereo estimation network, which can trans-
fer rich geometric knowledge to our model. Furthermore,
with the reliable depth estimated from the stereo estimation
network, we aggregate multi-view features through a depth-
guided plane-sweeping technique. This technique ensures
correspondence matching around the geometry in cost vol-
ume construction. We also present a stereo depth loss uti-
lizing the estimated stereo depth. These additional geomet-
ric cues from the stereo matching effectively mitigate the
ill-posedness in generalizable view synthesis. Notably, our
framework leveraging stereo images surpasses the previous
approaches [16, 21], which rely on extra depth information.

Furthermore, we propose the StereoNVS dataset, which
is the first dataset for training and evaluation of novel-
view synthesis using stereo-camera images. Our StereoNVS
dataset provides real-world and synthetic stereo images.
Our extensive evaluation on the StereoNVS dataset shows
that stereo-pair inputs can effectively enhance the quality
of novel-view synthesis, and shows that StereoNeRF out-
performs previous generalizable novel-view synthesis ap-
proaches in terms of image and shape qualities.

Our contributions are as follows:
• We propose a generalized NeRF approach that leverages

stereo-camera images for the first time to alleviate the ill-
posedness in generalizable novel-view synthesis.

• We propose a novel framework, StereoNeRF, which ex-
ploits the benefits of stereo images by integrating stereo
matching into generalizable view synthesis. To this end,
we present a stereo feature extractor, a depth-guided
plane-sweeping, and a stereo depth loss in our framework.

• We also present the StereoNVS dataset, the first dataset
for training and evaluation of novel-view synthesis ob-
tained by stereo cameras.

2. Related Work
2.1. Novel-View Synthesis

Novel-view synthesis aims to synthesize target-view im-
ages from reference-view images. Early approaches syn-
thesize novel-view images by blending pixels from multi-
ple input images [6, 13, 20]. Recent work adopting neural
volume representations has shown remarkable novel-view
synthesis results. Zhou et al. [43] propose multi-plane im-
ages (MPI) representation estimated from input images, but
their methods produce valid novel-view images only for
narrow ranges of camera poses. Mildenhall et al. [24] pro-
pose Neural Radiance Fields (NeRF) that can synthesize
photo-realistic target-view images via neural implicit repre-
sentations and volume rendering. Albeit its photo-realism,
computation-heavy per-scene optimization is needed. Re-
cent variants such as [9, 17, 25, 37] have remarkably re-
duced the optimization time, but they still require large
memory and several minutes for training.

Generalizable View Synthesis. Recently, many novel-
view synthesis approaches without per-scene optimization
have been proposed. Several studies directly predict pixel
colors by aggregating image features from aligned pixels,
without 3D representations. Suhail et al. [30] and Varma et
al. [32] adopt a transformer-based network [7] to compute
features along the epipolar lines, which needs a large num-
ber of training images for high-quality view synthesis. Du et
al. [8] propose a framework to synthesize target views from
two images with small overlapped regions.

Another research direction predicts volumetric represen-
tation [24] from aggregated features from reference views
and synthesizes images via volumetric rendering. Pixel-
NeRF, SRF, and GRF [4, 31, 38] predict radiance fields
from pixel-aligned features using an MLP. Among these
methods, SRF [4] uses two sampled images from an image
collection captured by a monocular camera as a stereo pair,
but shows limitied synthesis quality. IBRNet [33] proposes
to learn generic view interpolation functions, but suffers
from artifacts for challenging scenes with complex geome-
tries. MVSNeRF, GeoNeRF and NeuRay [2, 16, 21] utilize
the MVS approach using cost volume for better occlusion
handling in generalizable view synthesis.

However, all the aforementioned methods often fail to
capture accurate geometry, particularly in textureless re-
gions, leading to limited synthesis results. Unlike these
methods, our framework exploits stereo-camera images
with a fixed baseline to effectively capture the geometry
of complex scenes as well as textureless regions for high-
quality novel-view synthesis.

2.2. Stereo Matching and Multi-View Stereo

Geometry estimation is a long-standing problem in com-
puter vision that has a variety of applications. Among them,



stereo matching is a task that takes rectified stereo images
and computes stereo correspondence to estimate dispari-
ties [15, 27]. Recently, a huge number of data-driven ap-
proaches have been introduced with the emergence of a
vast amount of stereo-matching datasets [12, 23, 27] and
made significant progress [1, 23, 35, 39]. MVS approaches
that use more than two views have been extensively stud-
ied as well [11, 19, 29]. Recently, learning-based MVS ap-
proaches have been proposed, e.g., Cheng et al. [3], Gu et
al. [14], and Yang et al. [36] present efficient frameworks
that cascade cost volumes in a coarse-to-fine manner to en-
able high-resolution depth estimation.

In our work, we have the best of both worlds in our
generalizable view synthesis framework. We adopt the
MVS approach to aggregate multi-view information for
occlusion-aware geometry estimation, as done in GeoN-
eRF [16]. Furthermore, our framework also assumes struc-
tured stereo images as inputs, and integrates the two-view
stereo matching into our framework for robust and accurate
geometry estimation in generalizable novel-view synthesis.

3. StereoNeRF

For novel-view synthesis, our framework takes a set of rec-
tified stereo-camera images and estimates neural radiance
fields [24] from which novel-view images are rendered.
StereoNeRF integrates a well-designed stereo-matching al-
gorithm into the existing generalizable view synthesis ap-
proach [16]. In this section, we first provide an overall
pipeline that utilizes an pre-trained stereo estimation net-
work [35]. Then, we explain each step of our framework
and the training process in detail, highlighting how to inte-
grate stereo matching into our framework.

Overall pipeline. Fig. 3 shows an overview of our
pipeline. Our framework utilizes N pairs of stereo images
of a target scene {(InL, InR)}Nn=1 for novel-view synthesis.
In the first step, the pre-trained stereo estimation network
takes the n-th image pair (InL, I

n
R), and outputs stereo depths

(dns,L, d
n
s,R) and stereo-correlated features (tnL, t

n
R). In the

second step, a stereo feature extractor takes the stereo image
pair and the stereo-correlated features, and outputs stereo
image features (fn

L , f
n
R), explained in Sec. 3.1. The third

step aggregates stereo image features from all viewpoints
{(fn

L , f
n
R)}Nn=1 to build 3D feature volumes {(ϕn

L, ϕ
n
R)}Nn=1

using an MVS network (Sec. 3.2). For constructing feature
volumes that faithfully reflect the 3D geometry of a target
scene, the third step adopts a depth-guided plane-sweeping
which utilizes the estimated stereo depths (dns,L, d

n
s,R). Fi-

nally, a neural renderer predicts radiance fields from the
stereo image features {(fn

L , f
n
R)}Nn=1 and the feature vol-

umes {(ϕn
L, ϕ

n
R)}Nn=1 from all viewpoints, and novel-view

images are synthesized from the radiance fields (Sec. 3.3).
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Figure 3. Overview of StereoNeRF. StereoNeRF consists of a
shared feature extractor and a neural renderer. We design the fea-
ture extractor with a stereo estimation network, a stereo feature ex-
tractor, and a MVS network. StereoNeRF takes N pairs of stereo
images and a camera pose as inputs, and synthesizes a novel-view
image of the camera pose.

3.1. Feature Extraction from Stereo Image Pairs

Unlike previous approaches, which extract features of in-
put images respectively, our stereo feature extractor takes
rectified stereo-camera images and computes image feature
maps by exploiting the epipolar geometry between them.
To this end, our stereo feature extractor consists of three
parts: CNN encoders, stereo attention modules (SAM) [5],
and CNN decoders (Fig. 4). Moreover, we propose inte-
grating the stereo-correlated features (tnL, t

n
R) from the pre-

trained stereo estimation network into the SAM (green line
in Fig. 4). This integration inherits geometric cues from the
stereo estimation network. In the following, we provide the
detailed description of the stereo feature extractor.

First, the weight-shared CNN encoders project each of
InL and InR into the feature space. Then, we adopt the stereo
attention module (SAM) [5] to fuse two feature maps on the
horizontal epipolar lines. To this end, SAM estimates stereo
correspondences between two feature maps and explicitly
adds stereo-correspondent features, as shown in Fig. 5. In
addition, we extend the SAM by aggregating the stereo-
correlated features (tnL, t

n
R) in this feature fusion process.

Note that the stereo-correlated features are computed from
the pre-trained stereo estimation network, which provides
vital geometric cues. These stereo-correlated features en-
hance stereo correspondences between two feature maps,
leading to higher-quality fused feature maps.

Specific explanation of the aforementioned feature fu-
sion of the SAM is as follows (Fig. 5). For the left feature, a
warping matrix WR→L is built by multiplying a query ma-
trix and a key matrix followed by a softmax layer. The query
matrix is computed from the left feature and the stereo-
correlated features, and the key matrix is computed from
the right feature and the stereo-correlated features. Then,
a value matrix, computed from the right feature and the
stereo-correlated feature, is warped along the epipolar lines
by multiplying the warping matrix WR→L, then added to
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Figure 4. Stereo feature extractor of StereoNeRF, where an pre-
trained stereo estimation network is incorporated.

the left feature. The same feature fusion process is also per-
formed for the right feature.

For effective fusion of information from both stereo im-
ages and stereo-correlated features, the stereo feature ex-
tractor has three sequentially stacked SAM. Finally, the
weight-shared CNN decoders take each of the fused fea-
tures from the SAM, and generate stereo image features
(fn

L , f
n
R), which will be used for building feature volumes.

3.2. Depth-guided Feature Volume Construction

Once stereo image features are obtained, we aggregate
these features from all viewpoints to create cost volumes.
To this end, we adopt a plane-sweeping-based approach,
which computes multi-view correspondences among these
features. The plane-sweeping-based approach first defines a
depth range within pre-computed near and far depths ob-
tained from COLMAP [28]. Then, it hypothesizes depth
planes in the entire depth range. On these depth planes,
multi-view stereo image features are aggregated via plane-
sweeping to build cost volumes. Then, these cost volumes
are processed to yield feature volumes, which will be used
later in predicting neural radiance fields.

However, this plane-sweeping-based approach often
struggles with accurate geometry estimation. Since this ap-
proach searches the entire depth range of a scene, corre-
spondence matching is inaccurate and prone to error, espe-
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Figure 5. Stereo attention module used in the stereo feature extrac-
tor. We exploit the rich features from the pre-trained stereo estima-
tion module.
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Figure 6. Feature volume construction using DGPS.

cially in textureless regions. To tackle this issue, we intro-
duce a depth-guided plane-sweeping (DGPS), which con-
structs cost volumes around the stereo depth predicted from
the stereo estimation network. Unlike the previous approach
using the entire depth range, DGPS introduces a dynamic
search range that varies based on the estimated stereo depth.
This technique significantly constrains the search space and
reduces outliers in correspondence matching.

Fig. 6 depicts the feature volume construction us-
ing DGPS. Instead of searching the entire depth range,
we hypothesize depth planes around the stereo depths
(dns,L, d

n
s,R). Then, through DGPS, we aggregate the stereo

image features from all viewpoints {(fn
L , f

n
R)}Nn=1 on these

depth planes to build cost volumes. These cost volumes
are further processed via the MVS network to obtain fea-
ture volumes (ϕn

L, ϕ
n
R) and depth maps (dns,L, d

n
s,R). We re-

peat this process to obtain feature volumes and depth maps
for every viewpoint. The resulting multi-view feature vol-
umes and depth maps are denoted as {(ϕL

L, ϕ
L
R)}Nn=1 and

{(dnm,L, d
n
m,R)}Nn=1, respectively. Refer to Sec. B.3 in the

supplementary document for more details about our feature
volume construction.



3.3. Rendering Novel Views

Once feature volumes are constructed, novel-view images
can be rendered via neural rendering. For rendering novel-
view images, our framework adopts the rendering procedure
of GeoNeRF [16]. In the following, we briefly describe the
rendering procedure. Given a target viewpoint, we cast a
ray for each pixel and sample points along the ray in the 3D
space. Then, for each sampled point, we sample features
from all the feature volumes {(ϕn

L, ϕ
n
R)}Nn=1. We also sam-

ple features from all the image features {(fn
L , f

n
R)}Nn=1 by

projecting the sampled point onto input images. The sam-
pled volume and image features are aggregated by a neural
renderer network, and the color and density are estimated.
Finally, by integrating the estimated color values and depth
values of sampled points with their densities along each ray,
we obtain the color ĉ and the depth dr at each pixel of a
novel view, respectively.

3.4. Training StereoNeRF

We train StereoNeRF with ground-truth images and pseudo-
ground-truth depths for high-quality novel-view synthesis.
The pseudo-ground-truth depths dgt are obtained from the
pre-trained stereo estimation network [35]. Our training loss
L is defined as follows:

L = Lc + Ld, (1)

where Lc is a color loss and Ld is a depth loss. The color
loss is defined as a mean-squared-error (MSE) between the
rendered colors ĉ and ground-truth colors [24].

To alleviate the shape-radiance ambiguity [40] in scene
reconstruction using neural radiance fields, we introduce the
depth loss Ld, which is defined as:

Ld = λself
d Lself

d + λstereo
d Lstereo

d , (2)

where Lself
d is a self-supervised depth loss from GeoN-

eRF [16] and Lstereo
d is our proposed stereo depth loss.

Lself
d penalizes the depths estimated from both the stereo

estimation network (ds) and the MVS network (dm) by
comparing them to the depth rendered from NeRF (dr).

Our framework estimates depths from the stereo estima-
tion network (ds), the MVS network (dm), and the neural
renderer network (dr). The stereo depth loss Lstereo

d guides
these networks to predict more accurate depths using the
pseudo-ground-truth depths dgt. This loss introduces a fur-
ther quality improvement, especially in geometric details as
will be shown in Sec. 5.3. Lstereo

d is defined as:

Lstereo
d = λ1Ls

d + λ2Lm
d + λ3Lr

d, (3)

where Ls
d, Lm

d , and Lr
d penalizes depths ds, dm, and dr,

respectively, by comparing them with dgt. Note that dgt is
different from ds. We obtain dgt from the pre-trained stereo

estimation network with frozen parameters. On the other
hand, we obtain ds from the stereo estimation network in
our framework, which has trainable parameters. Refer to
Sec. B.4 in the supplementary document for more details
about our stereo depth loss.

Due to the different characteristics of datasets such as
baseline length, ds may have estimation error, which leads
to an error in the depth-guided plane-sweeping. To tackle
this, we partially train the matching and propagation net-
work in the stereo estimation network (Fig. 4) using Lself

d .
Lself
d provides multi-view supervision to the stereo estima-

tion network by leveraging dr estimated from multi-view
images. However, since dr may also have estimation error,
we further regularize the stereo estimation network using
Ls
d. This training scheme for the stereo estimation network

ensures consistent depth estimation, while preserving the
stereo matching capability. Sec. D.1 in the supplementary
document further discusses the training scheme of the stereo
estimation network.

4. StereoNVS Dataset
We propose the StereoNVS dataset, the first stereo-camera
image dataset for training and evaluating novel-view syn-
thesis using stereo-camera images. The StereoNVS dataset
provides both real and synthetic datasets, each of which is
dubbed StereoNVS-Real and StereoNVS-Synthetic. In the
following, we present the details of each dataset.

4.1. StereoNVS-Real

StereoNVS-Real provides real-world stereo-camera images
for the training and evaluation of novel-view synthesis. The
dataset provides stereo-camera images of 53 static scenes,
and around 25 stereo-image pairs per scene. The images
are undistorted and stereo-rectified, and have a resolution
of 1792 × 896. The camera parameters such as the camera
poses are provided as well. In our experiments, we divide
the dataset into 45 and 8 scenes as training and test sets.

To capture stereo images, we built a camera rig with two
Basler machine vision cameras. We measured the camera
parameters including the intrinsic and distortion parame-
ters by camera calibration using multi-view images of a
checkerboard [42]. Then, we collected stereo images from
multiple viewpoints for various indoor and bounded scenes
using our camera system. The captured images were then
undistorted and stereo-rectified. Finally, we obtained the
camera poses of the captured images using COLMAP [28].

4.2. StereoNVS-Synthetic

For quantitative evaluation of synthesized geometries, we
also present the StereoNVS-Synthetic dataset, constructed
by rendering synthetic 3D models using the 3D-Front
dataset [10]. The images have a resolution of 864 × 448,
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Figure 7. Qualitative comparison of novel-view synthesis on the StereoNVS dataset, showing rendering results for two real-world scenes
(above) and one synthetic scene (below). All models are trained using stereo images. Our method outperforms the baseline methods [16,
21, 32, 33] on both real-world and synthetic scenes, especially in thin structures and textureless regions.

which is half of the real dataset. StereoNVS-Synthetic pro-
vides stereo-camera images of 50 scenes, and around 150
stereo image pairs per scene as well as the ground-truth
camera parameters, camera poses, and depth maps. For
more details about the StereoNVS dataset, refer to Sec. E
in the supplementary document.

5. Experiments

We conduct extensive validation of our method on the Stere-
oNVS dataset. In the following, we will provide implemen-
tation details of our method (Sec. 5.1), compare our method
with other baselines (Sec. 5.2), and conduct a comprehen-
sive analysis of our proposed components, which proves the
effectiveness of our framework including the stereo feature
extractor, the depth-guided plane-sweeping, and the stereo
depth loss (Sec. 5.3).

StereoNVS-Real StereoNVS-Synthetic
Method PSNR(↑) SSIM(↑) LPIPS(↓) ABS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) ABS(↓)

SRF 21.12 0.6933 0.4164 2.9176 22.36 0.7162 0.4245 0.8125
IBRNet 26.12 0.8421 0.2095 0.7566 30.83 0.8889 0.1823 0.2628

GeoNeRF 28.01 0.8929 0.1460 0.5064 32.13 0.9179 0.1438 0.1577
GNT 26.08 0.8434 0.2285 1.0959 26.17 0.8406 0.2650 0.4512

GeoNeRF+D 25.65 0.8172 0.2082 0.8693 32.85 0.9321 0.1171 0.0782
NeuRay 26.51 0.8538 0.1887 0.6147 32.26 0.9104 0.1478 0.1571

Ours 28.44 0.9000 0.1396 0.4868 33.45 0.9336 0.1203 0.1056

Table 1. Quantitative comparison between the baseline meth-
ods [4, 16, 21, 32, 33] and ours. All models are trained using
stereo images. Our method shows superior performance on both
StereoNVS-Real and StereoNVS-Synthetic datasets.

5.1. Implementation Details

We train our model on the training set of StereoNVS-Real,
which has multi-view stereo image pairs of real scenes.
Our model is trained for 250K iterations. For each itera-
tion, we randomly select one scene and one target view-
point of the scene. For both training and evaluation, image



features and feature volumes are extracted from three stereo
image pairs (i.e., total six images) at three viewpoints near-
est to the target viewpoint. During training, 512 rays are
randomly selected for the training batch. We use the Adam
optimizer [18] with learning rates of 0.0005 and the cosine
annealing scheduling [22]. We employ UniMatch [35] for
both the pre-trained stereo estimation network within the
stereo feature extractor and the pseudo-ground-truth depth
of the stereo depth loss. Refer to Sec. B in the supplemen-
tary document for additional implementation details.

5.2. Comparison

We compare our method with recent generalizable novel
view synthesis methods: SRF [4], IBRNet [33], GeoN-
eRF [16], GNT [32] and NeuRay [21]. Like our method,
we use three stereo-camera image pairs to synthesize each
target-view image for all the baseline methods. While the
previous methods do not explicitly assume stereo-camera
images as their inputs, we also train them using stereo-
camera images as they can handle stereo-camera images as
independent inputs. All the baseline models are trained on
the training set of StereoNVS-Real, as done for our method.

We evaluate both image and depth qualities on the
StereoNVS-Real and the StereoNVS-Synthetic datasets.
For StereoNVS-Real, we utilize pseudo-ground-truth
depths obtained from COLMAP [28] to assess depth qual-
ity. On the other hand, for StereoNVS-Synthetic, we use
rendered depth maps as ground truths for depth quality as-
sessment. We employ PSNR, SSIM [34], and LPIPS [41]
as metrics for image quality and absolute error (ABS) as a
metric for depth quality.

Among the compared methods, for training and infer-
ence, NeuRay [21] requires depth maps and GeoNeRF [16]
can use depth maps as additional inputs. We denote such
variation of GeoNeRF as GeoNeRF+D. For their training
and inference, we used the pseudo-ground-truth depth maps
estimated by UniMatch [35] as done for our method.

Qualitative comparison. Fig. 7 presents a qualitative
comparison on novel view synthesis between our method
and previous methods [16, 21, 32, 33] using the StereoNVS
dataset. Previous methods estimate inaccurate geometry for
scenes with thin structures or textureless regions, resulting
in severe artifacts in the synthesized novel view images. In
contrast, our method clearly outperforms the baseline meth-
ods in view synthesis results with significantly fewer arti-
facts even in textureless regions, thanks to more accurately
estimated geometry. Moreover, our method shows better
synthesis results compared to GeoNeRF+D [16] and Neu-
Ray [21], even though they explicitly use depth maps in the
inference time, demonstrating the robust utilization of depth
maps in our framework.

StereoNVS-Real StereoNVS-Synthetic
PSNR(↑) SSIM(↑) LPIPS(↓) ABS (↓) PSNR(↑) SSIM(↑) LPIPS(↓) ABS (↓)

Baseline (a) 28.05 0.8953 0.1372 0.5598 32.22 0.9172 0.1386 0.1679
+ Stereo setting (b) 28.01 0.8929 0.1460 0.5064 32.13 0.9179 0.1438 0.1577
+ SAM (c) 28.21 0.8967 0.1398 0.4935 31.90 0.9167 0.1386 0.1531
+ Correlated feature (d) 28.31 0.8988 0.1370 0.5057 32.35 0.9245 0.1282 0.1416
+ DGPS (e) 28.42 0.8997 0.1403 0.5098 33.09 0.9304 0.1230 0.1246
+ Stereo depth loss (f) 28.44 0.9000 0.1396 0.4868 33.45 0.9336 0.1203 0.1056

Table 2. Quantitative ablation study.
Tab. 2 (b) Tab. 2 (d) Tab. 2 (e) Tab. 2 (f)

Figure 8. Qualitative ablation study. Our full method enables ac-
curate synthesis of a novel-view image and a depth map.

Quantitative comparison. Tab. 1 shows that our method
generally surpasses other baseline methods [4, 16, 21,
32, 33] in terms of image and depth qualities. GNT [32]
exhibits degraded performances, likely due to its data-
hungry transformer backbone. While performance differ-
ences with GeoNeRF are not substantial on the StereoNVS-
Real dataset, our method shows the superior perceptual
quality (Fig. 7) and significantly better performance on
the StereoNVS-Synthetic dataset. While GeoNeRF+D [16]
and NeuRay [21] achieve comparable performances on the
StereoNVS-Synthetic dataset, they show considerably de-
generated results on the StereoNVS-Real dataset. In con-
trast, our method demonstrates superior performance thanks
to the robustness of our framework. Sec. D.1 in the sup-
plementary document further discusses the sensitivity of
GeoNeRF+D, NeuRay, and our method to depth errors in
real-world images.

5.3. Analysis and Discussion

5.3.1 Ablation Study

To assess the impact of our proposed methods, we con-
duct an ablation study starting with our baseline model [16],
which is trained on three views in a monocular setting (i.e.,
three images). Although equipped with a stereo camera
setting, the baseline model trained on three stereo views
(i.e., six images) shows similar image qualities as shown
in Tab. 2 (b). This result indicates that sophisticated meth-
ods are needed to exploit the invaluable information from
stereo-camera images.

Tab. 2 shows that our model consistently demonstrates
improvements in view synthesis results, as we introduce our
proposed components. Our stereo feature extractor enables
us to estimate better geometry, leading to fewer artifacts in
novel view synthesis, as shown in Fig. 8 (d). The stereo
attention module (c) and the stereo-correlated features (d)



help extract robust stereo image features, which are par-
ticularly effective for real scenes and synthetic scenes, re-
spectively. Our DGPS is essential for better geometry esti-
mation, leading to significantly improved results as shown
in Fig. 8 (e), especially in textureless regions. This is fur-
ther evident in Tab. 2 (e), with considerable performance
gain on the StereoNVS-Synthetic dataset. Our final model
shows the best performances (Tab. 2 (f)), with high-quality
depth and view synthesis results (Fig. 8 (f)).

5.3.2 Effectiveness of Depth-Guided Plane-Sweeping

We conduct two experiments to demonstrate the effective-
ness of our DGPS. In the first experiment, we compare our
final model against a model without using DGPS. The “Fi-
nal model” in Tab. 3 denotes our final model with DGPS. As
shown in Tab. 3, the model without using DGPS shows de-
generated results compared to our final model, highlighting
the effectiveness of DGPS.

In the second experiment, we compare our model using
DGPS against a model using more depth planes for cost vol-
ume construction. The term ”Base model” in Tab. 4 refers
to our model that is solely equipped with the stereo feature
extractor, excluding DGPS and the stereo depth loss. We
train an additional model that uses approximately 1.5 times
the number of depth planes, compared to the base model.
Although this additional model utilizes more depth planes,
it shows similar results to the base model on StereoNeRF-
Synthetic, as reported in Tab. 4. This is because increas-
ing the number of planes does not guarantee accurate cor-
respondence matching, especially in textureless regions. In
contrast, our DGPS guarantees correspondence matching
across multi-view image features near the geometry, result-
ing in better image and depth qualities. Refer to Sec. C.2.1
in the supplementary document for more details.

5.3.3 Benefit of Stereo Estimation in Depth Loss

To show the effectiveness of using stereo estimation net-
works for depth supervision, we conduct an additional
experiment as follows. First, we obtain two pseudo-GT
depths: one from the pre-trained stereo network [35] (dgt)
as stated in Sec. 3.4 and the other from the state-of-the-art
learning-based MVS network (dmvs

gt ) [26]. Then, we train
two models with our methods using dgt and dmvs

gt , respec-
tively. Then, we compare their synthesis results based on
image and shape qualities.

As shown in Tab. 5, our model trained with dgt surpasses
the other model using dmvs

gt on StereoNVS-Synthetic. Note
that the MVS network takes more images than the stereo
network, seven images and two images, respectively. These
results show that the stereo network provides a reliable
depth signal for high-quality view synthesis thanks to its
generalization ability, which came from standardized inputs
of stereo-camera images and large-scale stereo datasets.

PSNR(↑) SSIM(↑) LPIPS(↓) ABS(↓)
Final model (Tab. 2 (f)) 33.45 0.9336 0.1203 0.1056

- DGPS 32.30 0.9240 0.1290 0.1300

Table 3. Effectiveness of our depth-guided plane-sweeping
(DGPS) compared to the baseline models without using DGPS.

PSNR(↑) SSIM(↑) LPIPS(↓) ABS(↓)
Base model (Tab. 2 (d)) 32.35 0.9245 0.1282 0.1416

+ more depth planes 32.33 0.9247 0.1299 0.1470
+ DGPS (Tab. 2 (e)) 33.09 0.9304 0.1230 0.1246

Table 4. Efficiency of our depth-guided plane-sweeping (DGPS)
compared to the baseline models using more depth planes.

PSNR (↑) SSIM (↑) LPIPS (↓) ABS (↓)
Ours w/ MVS depth (dmvs

gt ) 32.73 0.9277 0.1253 0.1216
Ours w/ Stereo depth (dgt) 33.45 0.9336 0.1203 0.1056

Table 5. Effectiveness of using stereo depths as pseudo-ground
truth for depth loss compared to using MVS depths.

6. Conclusion
This paper proposes StereoNeRF, a novel generalizable
view synthesis framework leveraging stereo-camera im-
ages for high-quality novel-view synthesis. Due to the ill-
posedness, previous methods struggle with accurate geome-
try estimation, which leads to severe artifacts in novel-view
synthesis. Since the stereo matching provides vital informa-
tion for accurate geometry reconstruction, our framework
incorporates the stereo matching into NeRF-based general-
izable view synthesis approach. To this end, we introduce
a stereo feature extractor, a depth-guided plane-sweeping,
and a stereo depth loss. We also present the StereoNVS
dataset, the first stereo-camera image dataset for training
and evaluating novel-view synthesis. Our extensive exper-
iments show that StereoNeRF is effective in generalizable
novel-view synthesis, particularly in scenes with complex
structures or textureless regions.

Limitations and Future Work. Our method is not free
from limitations. In sparse view settings, our method pro-
duces blurry images and inaccurate geometry, issues also
present in other methods. This limitation arises from the
insufficient information for novel viewpoints in the sparse
view settings. Our future work will involve additional geo-
metric or generative prior, along with stereo prior, to com-
pensate for the lack of information in such settings.
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