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A. Overview

In this supplemental document, we provide addi-
tional explanations of our methods (Sec. B), experi-
ment details (Sec. C), additional results (Sec. D), and
an additional discussion on the limitations (Sec. E).

B. Details on SideGAN

Our model is built on top of EG3D [2] with
the additional dual-branched discriminator and back-
ground network. For the components borrowed from
EG3D, we used the official PyTorch implemen-
tation of EG3D, which can be obtained from
https://github.com/NVlabs/eg3d. In the following,
we describe the implementation details of the dual-
branched discriminator and background network.

B.1. Dual-Branched Discriminator

Our proposed dual-branched discriminator is com-
posed of a shared block Ds

ϕ, an image branch Di
ϕ, a

pose branch Dp
ϕ and a pose encoder Eϕ (Figure 3 in

the main paper). A shared block takes an image as
input and outputs a feature map with the spatial res-
olution of 8× 8, which is fed to an image branch and a
pose branch. A pose encoder has eight fully-connected
layers. It takes a camera parameter ξ as input and mod-
ulates the output features of a pose branch. A camera
parameter is a 25-dimensional vector, which is com-
posed of the elements of intrinsic and extrinsic camera
matrices.

∗Both authors contributed equally to this research. Also, this
work was done during an internship at Kakao Brain.

B.2. Background Network

We adopt the background network of EpiGRAF [11]
to synthesize feature maps for the background region
separately from the foreground region. The background
synthesis in SideGAN is performed as follows. To syn-
thesize a 2D feature map describing the background
region, the background network utilizes the inverse
sphere parameterization as done in EpiGRAF, which
is stemmed from NeRF++ [13]. Specifically, the back-
ground network takes a 3D position x as input as well
as an input latent vector zbg, and synthesizes a volume
density and a feature vector encoding the color infor-
mation at the input 3D position x. Then, to obtain a
2D feature map for the entire background region for
a certain camera pose, we first sample a set of cam-
era rays, and sample 3D positions from the rays. Then,
for each sampled 3D position, a density and a feature
vector are synthesized using the background network.
Finally, we obtain a 2D feature map by volume render-
ing using the synthesized densities and feature vectors.

We implemented the background network using the
official implementation of EpiGRAF [11] with a slight
modification. Here, we describe only the modifications
that we made in our implementation. First, while the
original background network of EpiGRAF produces a
3-dimensional color vector for an input 3D position,
ours is modified to produce a 32-dimensional feature
vector. This modification is made for smoothly weld-
ing the background network with our image generator,
which produces a 32-dimensional feature map for the
foreground region. Second, while EpiGRAF samples 16
3D positions for each camera ray, ours samples 12 3D
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Figure 1. Histograms of camera poses of each dataset. From left to right, each column shows the distributions of each dataset:
FaceSynthetics [12], FFHQ [9], CelebAHQ [8], and AFHQ Cats [4]. Also, each row indicates the distributions of pitch, yaw,
and roll, sequentially. To be clear, 0◦ in each histogram corresponds to the frontal view.

positions due to the memory limit.

For the dataset where the background regions are
already removed such as CelebAHQ [8], we turned off
the background network in our experiments. Specifi-
cally, we construct our generator using only the image
generator without the background network, and define
the latent vector z as z = zfg instead of z = (zfg, zbg).

B.3. Additional Uniform Pose Sampling

As mentioned in Section 4.3 in the main paper, we
additionally sample camera parameters ξ from pre-
defined distributions of three types of angles (pitch,
roll, and yaw) for rendering fake images and learning
the photo-realistic image synthesis for side-view im-
ages. We note that the additionally sampled camera
poses are only used for the image branch Di

ϕ of the
discriminator during training. The pre-defined distri-
butions are as follows. The values of the distribution
are expressed in degrees and the zero value indicates
the frontal view. Pitch and roll angles are sampled from
N (0◦, 14.902) and N (0◦, 3.092), respectively, by refer-
ring to the camera distribution of FFHQ [8], a real hu-
man face dataset. On the other hand, yaw angles are
sampled from the uniform distribution within −120◦ to

120◦, which is wider than the ranges of the yaw angles
of both real and synthetic face datasets as shown in
Fig. 1. We empirically found that the sampling range
of [−120◦, 120◦] produces higher-quality results.

C. Details on the Experiments

C.1. Datasets

In this subsection, we describe the number of im-
ages, and the camera pose distribution of the datasets
used for training. We use off-the-shelf pose estimation
algorithms [6, 10] to obtain pseudo-ground-truth pose
labels. We excluded images with incorrectly estimated
poses from the training of our models. Subsequently,
we constructed our training datasets with correctly es-
timated poses using about 69K, 29K, and 5K images
from the FFHQ [9], CelebAHQ [8], and AFHQ Cats [4]
datasets, respectively. Additionally, for the experiment
with transfer learning as mentioned in Section 5 in
the main paper, we also constructed the dataset us-
ing about 100K images from the FaceSynthetics [12]
dataset.

Fig. 1 visualizes the distributions of the camera
poses (yaw, roll, and pitch angles) in the real-world and
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synthetic datasets (FFHQ [9], CelebAHQ [8], AFHQ
Cats [4] and FaceSynthetics [12]). Among the three
angles, the yaw angle corresponds to the horizontal ro-
tation of a face, which SideGAN aims to address. As
shown in the figure, all the real-world datasets have
narrow distributions centered around 0◦ for all three
angles, indicating that most of their images are frontal-
view images. On the other hand, the FaceSynthetics
dataset shows a wider distribution for the yaw angle
ranging from −75◦ to 75◦, indicating that it has a rel-
atively large number of side-view images.

C.2. Transfer Learning

In this subsection, we describe details on the addi-
tional evaluation setting with transfer learning (Sec-
tion 5 in the main paper). As mentioned, to evaluate
the performance of SideGAN under the setting with
sufficient knowledge for side-view images, we use the
training strategy of EG3D [2] to pre-train all models
on FaceSynthetics [12] and fine-tune the models on in-
the-wild datasets.

In the fine-tuning, we adopt the freezeG scheme [1]
to retain the knowledge learned from a synthetic
dataset in the pre-training stage. Specifically, in the
fine-tuning stage, we fix the weights of the mapping
network and the first three convolutional blocks in
the image generator while updating the weights of the
other layers.

C.3. Training Iterations

We train our model on the CelebAHQ [8] and
FFHQ [9] datasets using 25M images per GPU (3.906M
iterations) from scratch. For the experiments with
transfer learning, the number of images used in the
pre-training stage is 25M per GPU (3.906M iterations)
for FaceSynthetics [12] and the number of images used
in the fine-tuning stage is 10M per GPU (1.563M iter-
ations) for FFHQ, CelebAHQ, and AFHQ Cats [4]. To
be clear, we use the same setting for training EG3D for
a fair comparison.

All the experiments are performed utilizing four
NVIDIA A100 GPUs. The training takes 4.5-5.5 days
to learn from scratch and additional 2.5 days for trans-
fer learning.

C.4. Comparison

In this subsection, we describe details on the quanti-
tative comparison (Table 1 in the main paper) of Side-
GAN against π-GAN [3] and EG3D [2] such as the
number of generated images and how we sampled the
camera poses for rendering images for evaluation. In
order to evaluate the image and shape qualities of 3D
GANs for a wide range of viewing angles, we synthesize

images with camera poses from the frontal to side view-
points. The camera poses are sampled from the same
distribution for all three algorithms for a fair compar-
ison.

Image Quality. We randomly generate 50K images
at randomly sampled camera poses to evaluate the im-
age fidelity of 3D GANs based on the FID score [7]. The
pitch and roll angles are sampled from Gaussian dis-
tributionsN (0◦, 14.902) andN (0◦, 3.092), respectively.
These distributions are obtained from the pose distri-
butions of FFHQ [9], which has the largest number of
images among the real face datasets. To evaluate the
quality of images from the frontal to the side view, we
randomly sample yaw angles from the uniform distri-
bution U(−90◦, 90◦).

Shape Quality. We randomly generate 1024 images
at randomly sampled camera poses to evaluate the
shape quality of 3D GANs based on the depth error.
We use the same yaw and pitch distribution used for
the image fidelity evaluation. On the other hand, we
set the roll angles to zero since the roll distribution
obtained from the real face dataset has a standard de-
viation close to zero.

C.5. Analysis with respect to the Steep and Extrap-
olated Angles

Figure 7 in the main paper provides a comparison
between SideGAN and EG3D [2] on the image quality
with respect to camera poses. In the comparison, we
compare the FID scores of our model and EG3D for
three different cases of camera poses (near-frontal an-
gles, steep angles, and extrapolated angles) using the
FaceSynthetics dataset [12]. To this end, we generate
three evaluation datasets to measure FID scores us-
ing images from the FaceSynthetics dataset. Specif-
ically, for the case of ‘near-frontal angles’, we sam-
pled images of yaw angles within [−30◦, 30◦] from the
FaceSynthetics dataset. For the case of ‘steep angles’,
we sampled images of yaw angles within [−50◦,−30◦]
and [30◦, 50◦], and for the case of ‘extrapolated angles’,
we sampled images of yaw angles within [−90◦,−50◦]
and [50◦, 90◦]. In consequence, we obtained three eval-
uation datasets of 110,870, 56,578, and 32,552 images,
respectively, and used them to measure the FID scores.

C.6. Training Baselines

We train the baseline models: π-GAN [3] on the
CelebAHQ [8] and FFHQ [9] datasets, and EG3D [2]
on the CelebAHQ [8], FFHQ [9] and AFHQ Cats [4]
datasets. For each combination of the baseline models
and datasets, we save checkpoints during training and
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(a) CelebAHQ [8]

(b) FFHQ [9]

Figure 2. Additional synthesized images of our method at
the side-view camera pose. In this figure, our models are
trained without transfer learning.

use the best checkpoint with the lowest FID score [7]
in our evaluations.

For training π-GAN, we use the experimental se-
tups from the official implementation, which can be
found from https://github.com/marcoamonteiro/pi-
GAN. To be specific, we use the ‘CelebA’ setup pro-
vided in the official implementation of pi-GAN for
training the model on the CelebAHQ and FFHQ
datasets. For all experiments, the image resolution is
set to 256× 256 for a fair comparison with our model.
Also, we utilize three stages of progressive learning with
the following settings. The batch size is set to 18, 8,
and 4 for each stage, respectively. Also, the image res-
olution is doubled at each step starting from 64 × 64.
The number of points per each ray is fixed at 12 for
all stages. The learning rate for the generator is set to
4×10−5, 2×10−5, and 1×10−5 for each stage, respec-
tively. Also, the learning rate for the discriminator is
set to 4× 10−4, 2× 10−4, and 1× 10−4 for each stage,
respectively. In addition, the number of images used
for each stage is 10K, 55K, and 200K, respectively.

As mentioned in Section 5 in the main paper, we
adopt the settings from EG3D to train our model ex-
cept for a few things like image resolution, so we use
the same settings to train EG3D for a fair comparison.

(a) CelebAHQ [8]

(b) FFHQ [9]

(c) AFHQ Cats [4]

Figure 3. Additional synthesized images of our method at
the side-view camera pose. In this figure, our models are
trained with transfer learning.

Cosine similarity ↑
EG3D SideGAN w/o Lid SideGAN

w/o transfer learning 0.664 0.726 0.836
w transfer learning 0.713 0.778 0.850

Table 1. Evaluation on multi-view consistency using Arc-
Face [5] cosine similarity. SideGAN shows better results of
multi-view consistency than EG3D [2].

D. Additional Results

In this section, we present an evaluation on the
multi-view consistency (Sec. D.1), additional side-view
examples of our method (Sec. D.2), and qualitative
comparisons of SideGAN with other baseline meth-
ods (Sec. D.3): π-GAN [3] and EG3D [2] on the Cele-
bAHQ [8], FFHQ [9] and AFHQ Cats [4] datasets.
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D.1. Evaluation on Multi-view Consistency

As done in EG3D, we measure ArcFace [5] cosine
similarity of EG3D [2] and SideGAN trained on Cele-
bAHQ [8] in order to assess the multi-view consistency
of our method (Tab. 1). Note that we also evaluate our
model without Lid for fair comparison since we used
ArcFace for Lid in training (SideGAN w/o Lid in the
table). As seen in the table, SideGAN outperforms the
baseline regardless of the transfer learning.

D.2. Additional Side-view Examples

Fig. 2 and Fig. 3 show additional images synthesized
by our method at the side viewpoint in each experimen-
tal setting with and without transfer learning, respec-
tively, showing realistic synthesis results with diverse
styles such as skin color and hairstyle.

D.3. Additional Qualitative Comparisons

In order to demonstrate the superiority of our model
in photo-realistic image synthesis covering a wide range
of camera poses, we exhibit the generated images with
variable setups of the camera poses. Fig. 4 presents
synthesized multi-view images on the CelebAHQ and
FFHQ datasets at the side, frontal and steep view-
points, highlighting the clear images of our method.
For all datasets, SideGAN shows more realistic images
especially at the side viewpoint, compared to the other
baselines that synthesize blurry images with noisy fa-
cial boundaries. Furthermore, SideGAN is effective in
synthesizing realistic images at steep vertical viewing
angles. Fig. 5 presents multi-view images at the view-
points from the above, middle, and below, showing that
SideGAN synthesizes clearer images than the other
baselines thanks to our training methods.

Additionally, in order to demonstrate the superiority
of our method under the setting with sufficient knowl-
edge at side-viewing angles, we compare the generated
images and 3D geometries between EG3D and Side-
GAN using the models trained with transfer learning.
Fig. 6 presents multi-view images with wide yaw angles
from the frontal to the steep viewpoints and underly-
ing geometries of the side-view images, showing sta-
ble image quality from various viewing angles. For all
datasets, SideGAN synthesizes photo-realistic images
on a wide range of camera poses, due to the noisy-free
underlying geometry, especially at the side viewpoint.
On the contrary, the other baseline synthesizes blurry
images and low-fidelity geometry at the side viewpoint.

E. Additional Discussion on Limitations

Our framework may sometimes generate repetitive
patterns in the background region in synthesized im-

ages as shown in Fig. 3(c). This is possibly due to the
small network size of the background network. In our
work, we render the foreground and the background us-
ing the image generator and the background network,
respectively. While this separation improves the qual-
ity of synthesized images at the side view as shown in
Fig. 6, the background network burdens the memory
to train the model, so we utilize a small network archi-
tecture for the background network, which may some-
times suffer from unnatural results. We expect that ad-
ditional model capacity may lessen this phenomenon,
which will be complemented in future work.
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Figure 4. Multi-view consistent image synthesis at the diverse viewing angles. All models are trained without transfer
learning. SideGAN outperforms the other baselines on CelebAHQ [8] and FFHQ [9], especially at the side viewpoint.
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Figure 5. Multi-view consistent image synthesis at diverse pitch angles. All models are trained without transfer learning.
SideGAN synthesizes higher-quality images with clear facial boundaries than the other baselines on CelebAHQ [8] and
FFHQ [9] at the wide vertical viewing angles from the above to the below camera poses.
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Figure 6. Multi-view consistent image synthesis at diverse yaw angles. All models are trained with transfer learning. SideGAN
synthesizes higher-quality images with clear facial boundaries than EG3D [2] on CelebAHQ [8], FFHQ [9] and AFHQ Cats [4]
at the wide horizontal viewpoints from the frontal to the side camera poses, especially at the side viewpoint.
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