
FloVD: Optical Flow Meets Video Diffusion Model for Enhanced
Camera-Controlled Video Synthesis

Supplementary Material

In this supplemental document, we provide:
• Additional implementation details of FloVD,
• Experimental details of baseline methods,
• Additional evaluation details,
• Additional quantitative ablation, and
• Additional qualitative comparison.

1. Additional Implementation Details of FloVD

1.1. Network Architecture

The VAE encoders and decoders, and denoising U-Nets of
the object motion synthesis model (OMSM) and of the flow-
conditioned video synthesis model (FVSM) adopt the net-
work architectures of Stable Video Diffusion [2]. For the
flow encoder of FVSM, we adopt the CNN encoder from
CameraCtrl [4], modifying it to process two-channel opti-
cal flow maps instead of six-channel Plücker embeddings.
The flow encoder produces multi-level flow embeddings
{ζ(t,l)}T,L

t=1,l=1 for the t-th frame at level l, where T = 14
and L = 4. To incorporate the optical flow condition into
the denoising U-Net, the multi-level flow embeddings are
added to the intermediate feature maps within the U-Net’s
encoder. Each intermediate feature map matches the resolu-
tion and channel size of the corresponding flow embedding
at the encoder’s depth level l.

1.2. Experimental Details

For training OMSM and FVSM, we use learning rate of
0.00003 with the AdamW optimizer [8]. FVSM is trained
over approximately two days using 16 A100 GPUs. OMSM
is trained on the entire dataset for about three days using 8
A100 GPUs, followed by fine-tuning on the curated dataset
for an additional 1.5 days. As explained in the main pa-
per, we apply adaptive normalization for optical flow maps,
following Li et al. [6]. Specifically, we use different scale
factors for the normalization of x- and y-directional optical
flow vectors. The scale factors of (18, 12) and (45, 24) are
used to normalize flow-map data for OMSM and FVSM,
respectively.

Following Stable Video Diffusion [2], we adopt the
EDM framework [5] for both training and inference, and
apply linearly increasing classifier-free guidance during in-
ference. For training FVSM, we modify only the timestep
sampling strategy of the EDM framework. Inspired by T2I-
Adapter [9], we introduce a quadratic timestep sampling
strategy to enable FVSM to more effectively leverage the in-
put flow condition for structural content generation. Specifi-

cally, FVSM is trained primarily on highly noised data with
large timesteps.

To achieve this, timesteps are uniformly sampled within
the range [0, 1], squared, and subtracted from 1. The re-
sulting values are then scaled to match the range of (-3.66,
3.66), which roughly aligns with the timestep range used in
the EDM framework. This approach enables the denoising
U-Net in FVSM to better learn structural content generation
by leveraging the flow map condition, thereby enhancing its
capability for effective camera control.

1.3. Off-the-shelf Models Used in FloVD

We employ several off-the-shelf models in our framework:
a single-image 3D estimation network [13], an optical flow
estimation network [11], and a segmentation network [10]
for moving object detection.

Single-image 3D estimation network. We use Depth
Anything V2 [13] for the single-image 3D estimation net-
work. Specifically, we use its fine-tuned version for metric
depth estimation, which has ViT-base encoder and is trained
using the Hypersim dataset.

Optical flow estimation network. We use RAFT [11] for
the optical flow estimation network. Network outputs are
iteratively updated for 20 times to obtain the final optical
flow map.

Moving object segmentation network. In the flow in-
tegration stage, we use a binary mask for moving ob-
ject. To obtain the mask, we use an open-set segmentation
method, Grounded-SAM 2, which integrates an open-set
object detection model [7] and a foundation segmentation
model [10]. This method takes a text prompt and predict
masks indicating subjects related to the input text prompt.
To obtain masks for moving objects, we use ”moving ob-
ject.” as the input text prompt. We do not use the obtained
mask if the number of pixels in the mask was more than
50% of the total image pixels.

2. Experimental Details of Baseline Methods
We compare our method against baseline methods for
camera-controllable video synthesis [3, 4, 12, 14]. Among
these, MotionCtrl [12] and CameraCtrl [4] support detailed
camera control by utilizing camera parameters as input,
whereas AnimateDiff [3] and Direct-a-Video [14] support

1



Training Timestep Pexels-small (< 20) Pexels-med. (< 40) Pexels-large (≥ 40)
Data Strategy FVD (↓) FID (↓) IS (↑) FVD (↓) FID (↓) IS (↑) FVD (↓) FID (↓) IS (↑)

Baseline RE10K QTS 241.61 22.01 11.09 334.06 22.30 11.17 363.04 23.17 12.05
+ OMSM RE10K QTS 231.35 22.43 11.44 206.38 20.53 11.62 229.05 20.95 12.65
+ large-scale data Internal QTS 220.65 22.49 11.58 183.14 20.71 11.68 207.39 21.12 12.95

Baseline RE10K EDM 238.85 22.16 11.07 309.28 22.05 11.28 335.02 22.91 12.15
+ OMSM RE10K EDM 217.24 22.13 11.44 186.21 20.12 11.81 201.27 20.45 12.71
+ large-scale data Internal EDM 212.03 21.79 11.62 165.78 19.73 11.684 177.45 20.02 12.88

Table S1. Additional quantitative ablation study of our main components.

basic camera control operations, such as translation and
zoom. For all the baseline methods, we used the official
checkpoints and inference code provided in their respective
GitHub repositories.

MotionCtrl We use the official PyTorch implemen-
tation of MotionCtrl [12]. To ensure a fair com-
parison with our method, which is based on Sta-
ble Video Diffusion [2], we utilize the official vari-
ant of MotionCtrl that employs Stable Video Diffusion
(https://github.com/TencentARC/MotionCtrl).

CameraCtrl We use the official PyTorch implementation
of CameraCtrl [4]. To ensure a fair comparison with our
method, which is based on Stable Video Diffusion [2], we
utilize the official variant of CameraCtrl that employs Stable
Video Diffusion (https://github.com/hehao13/CameraCtrl).

AnimateDiff We use the official PyTorch implementa-
tion of AnimateDiff [3]. The official codes can be found in
(https://github.com/guoyww/AnimateDiff). To control pre-
defined camera trajectories, such as zoom and pan, Ani-
mateDiff provides fine-tuned models tailored for each cam-
era trajectory. Thus, we utilize these fine-tuned models for
camera control during video generation. Additionally, we
use the model from Realistic Vision as a backbone for Ani-
mateDiff, as it is most closely aligned with generating nat-
ural images.

Direct-a-Video We use the official PyTorch implementa-
tion of Direct-a-Video [14]. The official codes can be found
in (https://github.com/ysy31415/direct a video). Direct-a-
Video controls basic camera motions using camera parame-
ters such as x-pan ratio, y-pan ratio, and zoom ratio. For our
experiments, we set the pan ratio to 0.3 and use scales of 0.8
and 1.2 for zoom-in and zoom-out ratios, respectively.

3. Additional Details for Evaluation Protocol
3.1. Camera Controllability

To obtain each video clip in the evaluation dataset, we first
select a middle frame within the whole video frames as the

Set 1 (0-20) Set 2 (20-40) Set 3 (40-inf)

Figure S1. Visual examples of each benchmark dataset, catego-
rized according to the degree of object motion.

first frame, and then choose 13 additional frames at intervals
of four frames starting from the first frame, resulting in a
total of 14 frames. Then, we obtain camera parameters cor-
responding to these selected frames to serve as the ground-
truth camera parameters for the evaluation set. For the cam-
era parameters estimated from synthesized videos, we nor-
malize the translation vectors using a scale factor to account
for scene-specific scale variations, following CamI2V [15].
Specifically, the translation vectors are divided by a scene-
specific scale factor. This scale factor is determined based
on the L2 distance between the locations of the first camera
and farthest camera in the scene.

3.2. Video Synthesis Quality

As explained in the main paper, we provide three bench-
mark datasets of real-world videos categorized by small,
medium, and large object motions to evaluate the object
motion synthesis quality. To obtain videos with minimal
camera motions, we first obtain optical flow maps from the
Pexels dataset [1], and then filter out videos whose average
magnitude of the optical flow vectors of the background
is larger than 1.0. Fig. S1 shows several visual examples
from each benchmark dataset. The first set primarily fea-
tures landscapes or objects with minimal motions, while the
third set typically consists of objects with notable motions.

4. Additional Quantitative Ablation Study
Tab. S1 reports additional evaluation of our main compo-
nents using the three benchmark datasets for object mo-
tion synthesis quality. As shown in Tab.3 of the main pa-
per, introducing each component usually enhances evalua-

2

https://github.com/TencentARC/MotionCtrl
https://github.com/hehao13/CameraCtrl
https://github.com/guoyww/AnimateDiff
https://github.com/ysy31415/direct_a_video


tion metrics, in both cases using the quadratic timestep sam-
pling strategy (QTS) or EDM framework [5].

5. Additional Qualitative Comparison
We additionally provide visual comparison against previ-
ous methods. First, we compare our method with Animate-
Diff [3] and Direct-a-Video [14] using basic camera trajec-
tories such as zoom and translation, as these methods are
limited to those basic camera movements. Next, we com-
pare our method with MotionCtrl [12] and CameraCtrl [4],
which support more detailed camera control during video
generation.

5.1. Using Basic Camera Trajectory

Fig. S2 presents a visual comparison using basic camera
trajectories such as zoom-in and translation to left and
right. Unlike our method, which uses a single image as in-
put, Direct-a-Video [14] and AnimateDiff [3] require text
prompts as input. Thus, we use text prompts of videos from
the Pexels dataset [1] as input for these methods, while the
first frame of the same video serves as input for our method.
As shown in Fig. S2, our method synthesizes high-quality
video frames with accurate camera control, while previous
methods produce video frames with quality degradation.

5.2. Using Detailed Camera Trajectory

Fig. S3 and Fig. S4 provide a visual comparison of syn-
thesized video frames with detailed camera trajectory. Mo-
tionCtrl [12] often fails to accurately follow the input cam-
era trajectory, whereas both CameraCtrl [4] and our method
demonstrate accurate camera control performance.

Fig. S5 provides additional visual comparison across all
the methods. Our method generates realistic object motion
in the synthesized video frames, while previous methods of-
ten produce unnatural videos with artifacts. In particular,
CameraCtrl [4] often synthesizes video frames without ob-
ject motion, and MotionCtrl [12] often produces inconsis-
tent foreground and background, as shown in Fig. S5. Ad-
ditional visual examples can be found in Fig. S6.

3



Input Frame 1 Frame 4 Frame 8 Frame 11 Frame 14

“close up video 
of a burning paper”

“close up video 
of a burning paper”

O
ur

s
D

ire
ct

-a
-v

id
eo

An
im

at
eD

iff

Camera pose: Zoom-In

O
ur

s
D

ire
ct

-a
-v

id
eo

An
im

at
eD

iff

“aerial view of 
steep turns in the 
mountains perfect 
for drifting rally”

“aerial view of 
steep turns in the 
mountains perfect 
for drifting rally”

Camera pose: Translate Right

O
ur

s
D

ire
ct

-a
-v

id
eo

An
im

at
eD

iff

“A person in a 
green shirt … a 

towel around their 
neck, is seated on 
a park bench ...”

“A person in a 
green shirt … a 

towel around their 
neck, is seated on 
a park bench ...”

Camera pose: Translate Left

Figure S2. Additional qualitative comparison of our method against Direct-a-video [14] and AnimateDiff [3] using basic camera trajecto-
ries.

4



Camera
poses

O
ur

s
C

am
er

aC
trl

M
ot

io
nC

trl
In

pu
t i

m
ag

e

Camera
poses

O
ur

s
C

am
er

aC
trl

M
ot

io
nC

trl
In

pu
t i

m
ag

e

Frame 1 Frame 5 Frame 10 Frame 14

The camera rotates to the right 
while moving along the curve.

The camera moves to the left 
while rotating to the left.

Figure S3. Additional qualitative comparison of our method against MotionCtrl [12] and CameraCtrl [4] using detailed camera trajectories.
MotionCtrl often fails to follow the input camera parameters during video generation.

5



Camera
poses

O
ur

s
C

am
er

aC
trl

M
ot

io
nC

trl
In

pu
t i

m
ag

e

Camera
poses

O
ur

s
C

am
er

aC
trl

M
ot

io
nC

trl
In

pu
t i

m
ag

e

Frame 1 Frame 5 Frame 10 Frame 14

The camera rotates to the right 
while moving forward.

The camera moves to the right
while slightly rotating to the right.

Figure S4. Additional qualitative comparison of our method against MotionCtrl [12] and CameraCtrl [4] using detailed camera trajectories.
MotionCtrl often fails to follow the input camera parameters during video generation.

6



Camera
poses

O
ur

s
C

am
er

aC
trl

M
ot

io
nC

trl
In

pu
t i

m
ag

e

Camera
poses

O
ur

s
C

am
er

aC
trl

M
ot

io
nC

trl
In

pu
t i

m
ag

e

Frame 1 Frame 5 Frame 10 Frame 14
Figure S5. Additional qualitative comparison of our method against MotionCtrl [12] and CameraCtrl [4] using detailed camera trajectories.
Our method produces more natural object motion, while CameraCtrl produces a foreground object without motions, and MotionCtrl
produces artifacts.

7



Camera
poses

Camera
poses

Camera
poses

In
pu

t i
m

ag
e

O
ur

s
C

am
er

aC
trl

M
ot

io
nC

trl
In

pu
t i

m
ag

e

Camera
poses

Camera
poses

In
pu

t i
m

ag
e

Camera
poses

O
ur

s
C

am
er

aC
trl

M
ot

io
nC

trl
O

ur
s

C
am

er
aC

trl
M

ot
io

nC
trl

Figure S6. Additional qualitative comparison of our method against MotionCtrl [12] and CameraCtrl [4] using detailed camera trajectories.

8



References
[1] Pexels, royalty-free stock footage website. https://

www.pexels.com. Accessed: 2024-09-30. 2, 3
[2] Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel

Mendelevitch, Maciej Kilian, Dominik Lorenz, Yam Levi,
Zion English, Vikram Voleti, Adam Letts, et al. Stable
video diffusion: Scaling latent video diffusion models to
large datasets. arXiv preprint arXiv:2311.15127, 2023. 1,
2

[3] Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang,
Yaohui Wang, Yu Qiao, Maneesh Agrawala, Dahua Lin,
and Bo Dai. Animatediff: Animate your personalized text-
to-image diffusion models without specific tuning. arXiv
preprint arXiv:2307.04725, 2023. 1, 2, 3, 4

[4] Hao He, Yinghao Xu, Yuwei Guo, Gordon Wetzstein, Bo
Dai, Hongsheng Li, and Ceyuan Yang. Cameractrl: Enabling
camera control for text-to-video generation. arXiv preprint
arXiv:2404.02101, 2024. 1, 2, 3, 5, 6, 7, 8

[5] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine.
Elucidating the design space of diffusion-based generative
models. Advances in neural information processing systems,
35:26565–26577, 2022. 1, 3

[6] Zhengqi Li, Richard Tucker, Noah Snavely, and Aleksander
Holynski. Generative image dynamics. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 24142–24153, 2024. 1

[7] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao
Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun
Zhu, et al. Grounding dino: Marrying dino with grounded
pre-training for open-set object detection. arXiv preprint
arXiv:2303.05499, 2023. 1

[8] I Loshchilov. Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101, 2017. 1

[9] Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian
Zhang, Zhongang Qi, and Ying Shan. T2i-adapter: Learning
adapters to dig out more controllable ability for text-to-image
diffusion models. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 4296–4304, 2024. 1

[10] Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang
Hu, Chaitanya Ryali, Tengyu Ma, Haitham Khedr, Roman
Rädle, Chloe Rolland, Laura Gustafson, et al. Sam 2:
Segment anything in images and videos. arXiv preprint
arXiv:2408.00714, 2024. 1

[11] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field
transforms for optical flow. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–
28, 2020, Proceedings, Part II 16, pages 402–419. Springer,
2020. 1

[12] Zhouxia Wang, Ziyang Yuan, Xintao Wang, Yaowei Li, Tian-
shui Chen, Menghan Xia, Ping Luo, and Ying Shan. Mo-
tionctrl: A unified and flexible motion controller for video
generation. In ACM SIGGRAPH 2024 Conference Papers,
pages 1–11, 2024. 1, 2, 3, 5, 6, 7, 8

[13] Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiao-
gang Xu, Jiashi Feng, and Hengshuang Zhao. Depth any-
thing v2. arXiv preprint arXiv:2406.09414, 2024. 1

[14] Shiyuan Yang, Liang Hou, Haibin Huang, Chongyang Ma,
Pengfei Wan, Di Zhang, Xiaodong Chen, and Jing Liao.
Direct-a-video: Customized video generation with user-
directed camera movement and object motion. In ACM SIG-
GRAPH 2024 Conference Papers, pages 1–12, 2024. 1, 2, 3,
4

[15] Guangcong Zheng, Teng Li, Rui Jiang, Yehao Lu, Tao Wu,
and Xi Li. Cami2v: Camera-controlled image-to-video dif-
fusion model. arXiv preprint arXiv:2410.15957, 2024. 2

9

https://www.pexels.com
https://www.pexels.com

	. Additional Implementation Details of FloVD
	. Network Architecture
	. Experimental Details
	. Off-the-shelf Models Used in FloVD

	. Experimental Details of Baseline Methods
	. Additional Details for Evaluation Protocol
	. Camera Controllability
	. Video Synthesis Quality

	. Additional Quantitative Ablation Study
	. Additional Qualitative Comparison
	. Using Basic Camera Trajectory
	. Using Detailed Camera Trajectory


