
FloVD: Optical Flow Meets Video Diffusion Model for Enhanced
Camera-Controlled Video Synthesis

Wonjoon Jin1,2† Qi Dai2 Chong Luo2 Seung-Hwan Baek1 Sunghyun Cho1

1POSTECH 2Microsoft Research Asia

Abstract

This paper presents FloVD, a novel optical-flow-based
video diffusion model for camera-controllable video gen-
eration. FloVD leverages optical flow maps to represent
motions of the camera and moving objects. This approach
offers two key benefits. Since optical flow can be directly
estimated from videos, our approach allows for the use of
arbitrary training videos without ground-truth camera pa-
rameters. Moreover, as background optical flow encodes 3D
correlation across different viewpoints, our method enables
detailed camera control by leveraging the background mo-
tion. To synthesize natural object motion while supporting
detailed camera control, our framework adopts a two-stage
video synthesis pipeline consisting of optical flow genera-
tion and flow-conditioned video synthesis. Extensive exper-
iments demonstrate the superiority of our method over pre-
vious approaches in terms of accurate camera control and
natural object motion synthesis.

1. Introduction
Video diffusion models have made significant strides in
generating high-quality videos by leveraging large-scale
datasets [3–5, 12, 14, 22, 26, 31, 39]. However, they often
lack the ability to incorporate user-defined controls, partic-
ularly in terms of camera movement and perspective. This
limitation restricts the practical applications of video diffu-
sion models, where precise control over camera parameters
is crucial for various tasks such as film production, virtual
reality, and interactive simulations.

Recently, several approaches have introduced camera
controllability to video diffusion models. One line of meth-
ods uses either text descriptions or user-drawn strokes that
describe background motion as conditional inputs to rep-
resent camera motion [6, 22, 25, 33, 40]. However, these
methods support only limited camera controllability, such
as zoom and pan, during video generation.

More sophisticated camera control has been achieved
by directly using camera parameters as inputs [2, 11,

†Work done during an internship at Microsoft Research Asia.

Ours CameraCtrl MotionCtrl

Fr
am

e
1

X-t
slice

Fr
am

e
8

Fr
am

e
14

Figure 1. Synthesized video frames with ’zoom-out’ camera mo-
tion. X-t slice reveals pixel value changes along the red line. Our
method shows natural object motion and accurate camera control,
while CameraCtrl [11] produces a foreground object without mo-
tions, and MotionCtrl [33] produces artifacts.

18, 32–35, 38, 41, 42]. In particular, recent methods em-
bed input camera parameters using the Plücker embed-
ding scheme [27], which involves embedding ray origins
and directions, and feed them into video diffusion mod-
els [2, 11, 35, 42]. While these approaches offer more de-
tailed control, they require a training dataset that includes
ground-truth camera parameters for every video frame. Ac-
quiring such datasets is challenging, leading to the use of re-
stricted datasets that primarily consist of static scenes, such
as RealEstate10K [43]. Consequently, they suffer from lim-
ited generalization capability, producing videos with unnat-
ural object motions and inaccurate camera control (Fig. 1).

To enable realistic video synthesis with natural object
motions and accurate camera control, our key idea is using
optical flow as conditional input to a video diffusion model.
This approach provides two key benefits. First, since opti-
cal flow can be directly estimated from videos, our method
eliminates the need for using datasets with ground-truth
camera parameters. This flexibility enables our model to
utilize arbitrary training videos. Second, since background
motion of optical flow encodes 3D correlations across dif-
ferent viewpoints, our method enables detailed camera con-

1

trol by leveraging the background motion. As a result, our
approach facilitates natural object motion synthesis and pre-
cise camera control (Fig. 1).

Based on the key idea, this paper presents FloVD, a novel
camera-controllable video generation framework that lever-
ages optical flow. Given a single image and camera param-
eters, FloVD synthesizes future frames with a desired cam-
era trajectory. To this end, our framework employs a two-
stage video synthesis pipeline: optical flow generation and
flow-conditioned video synthesis. We generate optical flow
maps representing motions of the camera and moving ob-
jects from the input image and camera parameters. This flow
maps are then fed into a flow-conditioned video synthesis
model to generate the final output video.

To synthesize natural object motion while supporting de-
tailed camera control, FloVD divides the optical flow gener-
ation stage into two sub-problems: camera flow generation
and object flow generation. First, we convert input camera
parameters into optical flow of the background motion by
using 3D structure estimated from the input image. Next,
an object motion synthesis model is introduced to generate
the optical flow for object motions based on the input im-
age. By combining both the background and object motion
flows, we obtain the final optical flow maps.

Our contributions are summarized as follows:
• We present a novel camera-controllable video gener-

ation framework that leverages optical flow, allowing
our method to utilize arbitrary training videos without
ground-truth camera parameters.

• To achieve detailed camera control and high-quality video
synthesis, we adopt a two-stage video synthesis pipeline,
flow generation and flow-conditioned video synthesis.

• Extensive evaluation demonstrates the effectiveness of
our method, showcasing its ability to produce high-
quality videos with accurate camera control and natural
object motion.

2. Related Work

2.1. Camera-Controllable Video Synthesis

Following the tremendous success of video diffusion
models, numerous efforts have been made to integrate
camera controllability into the video generation process.
MovieGen [22] uses text descriptions that describe cam-
era motions to control camera motion. MCDiff [6], Drag-
NUWA [40], and MotionI2V [25] enable camera control
through user-provided strokes, manipulating background
motion to adjust camera movement. AnimateDiff [9] and
Direct-a-video [38] enable camera control by training mod-
els on an augmented video datasets that contain simple cam-
era movements, such as translation. While these methods
offer basic camera control with high-level instructions such
as zoom and pan, they lack the detailed control capability

for user-defined specific camera motions.
Recent methods have demonstrated detailed control of

camera movement by using desired camera parameters as
conditional input. To this end, these approaches train mod-
els on datasets that provide ground-truth camera parameters
for every video frame. MotionCtrl [33] directly projects the
camera extrinsic parameters onto the intermediate features
of a diffusion model, while CameraCtrl [11] leverages the
Plücker embedding scheme [27] to encode the camera ori-
gin and ray directions as conditioning input. CamCo [35]
and CamI2V [42] enhance camera control through an epipo-
lar attention mechanism across video frames. VD3D [2] en-
ables camera motion control within the video synthesis pro-
cess of transformer-based video diffusion models.

While these methods support detailed camera control,
they are primarily trained on restricted datasets [43] due
to the requirement for camera parameters during training.
This limitation degrades the generalization ability and leads
to unnatural object motion synthesis. In contrast, our model
can be trained on arbitrary videos by leveraging optical flow
maps as input, which can be robustly estimated using recent
optical flow estimation models [28].

2.2. Object Motion Synthesis

Besides camera motion control, controlling object motion
during video generation has been practiced either by utiliz-
ing user-provided inputs or by learning the distribution of
object motion from data. Several studies employ user-stroke
input [6, 10, 25, 40] or modulation of attention maps during
diffusion model’s denoising process [38] to enable desired
control of object motion. Another research direction focuses
on synthesizing object motion by learning the diverse mo-
tions present in video datasets [7, 8, 15, 19, 30]. Given a
single image, these methods synthesize flow maps to repre-
sent natural object motion and use them to animate the input
image. However, these methods are primarily aimed at ob-
ject motion synthesis and do not support detailed camera
motion control during video generation.

3. FloVD Framework
Fig. 2 presents an overview of FloVD. Our framework takes
an image Is and camera parameters C = {Ct}Tt=1 as input
where t is a video frame index, and T is the number of video
frames. Ct is defined as a set of extrinsic and intrinsic cam-
era parameters. Given the input conditions, our framework
synthesizes a video I = {It}Tt=1 that starts from Is as the
first frame and follows the input camera trajectory, where It
is the t-th video frame.

FloVD consists of two stages. First, the flow generation
stage synthesizes two sets of optical-flow maps that rep-
resent camera and object motions using 3D warping and
an object motion synthesis model (OMSM), respectively.
We refer to these optical flow maps as camera flow maps

2

Stage 1) Flow generation Stage 2) Flow-conditioned video synthesis

OMSM

Camera flow maps

Object flow maps

Camera-object
flow maps

FVSM

Input image Synthesized video

3D warping

Input image
Camera

parameters

Single image

Inputs

Figure 2. Overview of FloVD. Given an image and camera parameters, our framework synthesizes a video frames following the input
camera trajectory. To this end, we synthesize two sets of optical flow maps that represent camera and object motions. Then, two optical
flow maps are integrated and fed into the flow-conditioned video synthesis model, enabling camera-controllable video generation.

and object flow maps. These flow maps are integrated to
form a single set of optical flow maps, which we refer to as
camera-object flow maps. In the subsequent stage, a flow-
conditioned video synthesis model (FVSM) synthesizes a
video using the input image Is and the camera-object flow
maps. In the following, we describe each stage in detail.

3.1. Flow Generation

Camera flow generation. In the flow generation stage,
we first generate camera flow maps Fc = {f c

t }Tt=1 where
f c
t is an optical flow map from the first frame to the t-

th frame. To generate camera flow maps reflecting the 3D
structure in the input image Is, we estimate a depth map ds

from Is using an off-the-shelf single-image 3D estimation
network [37]. Using the estimated depth map, we unpro-
ject each pixel coordinate xs in the input image Is into the
3D space. Then, for each t, we warp the unprojected co-
ordinates and project them back to the 2D plane using Ct

to obtain the warped coordinate xt. Finally, we construct
the camera flow map f c

t by computing displacement vec-
tors from xs to xt.

Object flow synthesis. In this stage, we also generate ob-
ject flow maps Fo = {fo

t }Tt=1 that represent object motions
independent of background motions. To this end, we de-
velop OMSM based on the latent video diffusion model [3].
Specifically, as shown in Fig. 3(a), OMSM consists of a de-
noising U-Net, and an encoder and decoder of the latent
video diffusion model’s variational autoencoder (VAE). In
OMSM, the input image Is is first encoded by the VAE en-
coder. Then, the denoising U-Net takes a concatenation of
the encoded input image and a noisy latent feature volume
as input, and iteratively denoises the latent feature volume
to synthesize latent object motion flow maps. Finally, the
VAE decoder decodes the synthesized result and produces
object flow maps Fo.

Inspired by Marigold [17], we utilize the VAE decoder of
the latent video diffusion model, which is trained on RGB
images, for decoding object flow maps without any archi-
tectural changes or fine-tuning. Specifically, from the three

(a) Object Motion Synthesis Model (OMSM)

C

Iterative
denoising

Object
flow maps

(b) Flow-conditioned Video Synthesis Model (FVSM)

C ܦ

Iterative
denoising

Synthesized
video frames

Camera-object
flow maps

ܧ

… ߦ
+ +

ܦ

௦ܫ ܧ

௦ܫ ܧ Denoising
U-Net

Denoising
U-Net

Figure 3. Network architectures of OMSM and FVSM.

output channels of the VAE decoder corresponding to RGB,
we use only the first two channels for the x and y com-
ponents of an object flow map. Our training process also
involves the VAE encoder. Like the VAE decoder, we use
the VAE encoder of the latent video diffusion model with-
out any architectural changes or fine-tuning. For the three
input channels of the VAE encoder, we feed the x and y
components of an object flow map, along with their aver-
age (x+ y)/2. We verified that the optical flow map can be
reconstructed from the encoded latent feature with a negli-
gible error without any modification of the VAE.

Flow integration. Once the camera and object flow maps,
Fc and Fo, are generated, we obtain camera-object flow
maps F = {ft}Tt=1 by combining them. The integration is
performed as follows.

First, we estimate a binary mask Mobj from the input
image Is using an off-the-shelf segmentation model [23],
which indicates pixels corresponding to moving objects. We
use a single binary mask Mobj for t, as all flow maps are

3

forward directional optical flow maps from the first frame
to the t-th frame. Based on Mobj , we combine f c

t and fo
t .

Specifically, for each pixel x specified by Mobj , we com-
pute its displaced position x′ using the object motion in fo

t

as x′ = x+fo
t,x, where fo

t,x is the optical flow vector in fo
t at

pixel x. Next, we transform x′ using the camera parameter
Ct and the depth map ds, obtaining x′

t, which represents the
displaced position of x at the t-th frame due to both cam-
era and object motions. We then compute the flow vector
f ′
t,x = x′

t − x. Finally, we derive the camera-object flow
map ft as:

ft,x = (1−Mobj
x) · f c

t,x +Mobj
x · f ′

t,x, (1)

where Mobj
x is the binary value of Mobj at pixel x.

It is important to note that physically valid integration
of camera and object flows requires object motion informa-
tion along the z-axis (orthogonal to the image plane), which
is not captured in the object flow maps. Thus, our integra-
tion process does not produce physically accurate camera-
motion flow maps. However, we experimentally found that
our framework can still synthesize videos with natural ob-
ject motions. This is made possible by the flow-conditioned
video synthesis model (FVSM), which is trained on natural-
looking videos, ensuring realistic object motions, even for
input noisy camera-motion flow maps.

Our OMSM is trained to generate non-zero flow vectors
only for dynamic objects. Therefore, we do not necessarily
need to use the mask Mobj in Eq. (1); instead, we can trans-
form the entire object motion flow maps using the camera
parameters. However, we found empirically that using the
mask Mobj improves video synthesis quality by removing
incorrectly synthesized flow vectors in static regions of fo

t .

3.2. Flow-Conditioned Video Synthesis

The flow-conditioned video synthesis stage synthesizes a
video I using the input image Is and the camera-object
flow maps F as conditions. To achieve this, our framework
utilizes FVSM, which extends the latent video diffusion
model [3] by incorporating an additional flow encoder in-
spired by the T2I-Adapter architecture [20]. Specifically, as
shown in Fig. 3(b), our model consists of a flow encoder
Ef , a denoising U-Net, and a VAE encoder and decoder.

The flow encoder takes the input camera-object flow
maps F , and computes multi-level flow embeddings:

{ξ(t,l)}T,L
t=1,l=1 = Ef (F), (2)

where ξ(t,l) is a flow embedding of the t-th frame It at level
l. Each flow embedding has the resolution of its correspond-
ing layer’s latent feature in the denoising U-Net. The de-
noising U-Net takes a concatenation of the encoded input
image and a noisy latent feature volume as input, iteratively
denoises the latent feature volume of the video. Addition-
ally, the denoising U-Net also takes the multi-level flow

embeddings by adding each of them to the feature at each
layer of the denoising U-Net. Finally, the synthesized video
frames are obtained by decoding the denoised latent feature
volume using the VAE decoder. More details on the network
architecture can be found in the supplemental document.

4. FloVD Training

FloVD utilizes two diffusion models: OMSM and FVSM,
which are trained separately. As discussed in Sec. 1, both
models can be effectively trained using a wide range
of videos with dynamic object motions without requir-
ing ground-truth camera parameters, thanks to our optical-
flow-based representation. In the following, we explain our
datasets and training strategies for our models.

4.1. Training Datasets

For training these diffusion models, we primarily use an in-
ternal dataset containing 500K video clips, and its subset
of video clips without camera motions. We refer to these
as the full dataset and the curated dataset, respectively. The
full dataset contains scenes similar to those in the Pexels
dataset [1]. The curated dataset contains around 100K video
clips. For training OMSM, we use both datasets, while for
training FVSM, we use only the full dataset.

Training the diffusion models in our framework requires
optical flow maps for each video clip. We estimate the opti-
cal flow maps using an off-the-shelf estimator [28], and use
them as the ground-truth object flow maps for OMSM, and
the camera-object flow maps for FVSM.

The curated dataset is generated through the following
process. For each video clip in the full dataset, we first de-
tect the static background region from the first frame using
an off-the-shelf semantic segmentation model [23]. Next,
we compute the average magnitude of the optical flow vec-
tors for all video frames within the background region. If
this average magnitude is smaller than a specified thresh-
old, we consider the video clip to have no camera motion
and include it in the curated dataset.

4.2. Training Object Motion Synthesis

OMSM is trained in two stages. The first stage initializes the
model with the parameters of a pre-trained video diffusion
model, and trains the model on the full dataset. The second
stage fine-tunes the model using the curated dataset with-
out camera motions. During training, we update only the
parameters of the denoising U-Net, while fixing the param-
eters of the VAE encoder and decoder. We train the model
via denoising score matching [16].

The two-stage approach helps overcome the domain dif-
ference between the video synthesis task of the pretrained
model and the object motion synthesis task, allowing for ef-
fective learning of object motion synthesis from the small-

4

2nd frame 11th frame

Using original dataset Using curated dataset

2nd frame 11th frame

Figure 4. Object flow maps synthesized by OMSM trained on the
full dataset (left), and the curated dataset (right). White indicates
optical flow vectors with no motion.

scale curated dataset. Fig. 4 shows an example of synthe-
sized motions after the first and second training stages. Af-
ter the first stage, OMSM is effectively trained to synthesize
object motion flow maps, but they exhibit camera motions
in the background. After the second stage, the model can
successfully synthesize object motion flow maps with min-
imal camera motions.

4.3. Training Flow-Conditioned Video Synthesis

We initialize FVSM using the parameters of a pretrained
video diffusion model [3]. Then, we train only the flow en-
coder while fixing the other components. Similar to OMSM,
we train FVSM via denoising score matching [16]. While
the optical flow maps are directly estimated from video
datasets in the training time, the camera-object flow maps
used in the inference time are synthesized through 3D warp-
ing and OMSM. Nevertheless, both optical flow maps con-
tain camera and object motions in the form of flow vectors,
enabling the FVSM to effectively produce natural videos
with the desired camera motion.

5. Experiments
5.1. Implementation Details

FloVD synthesizes 14 video frames at once, following Sta-
ble Video Diffusion [3]. We use a resolution of 320 × 576
for both video frames and optical flow maps. FVSM is
trained for 50K iterations with 16 video clips and their op-
tical flow maps per training batch. OMSM is trained on the
full dataset for 100K iterations and then fine-tuned using
the curated dataset for 50K iterations, with 8 optical flow
maps per training batch. Inspired by T2I-Adapter [20], we
use a quadratic timestep sampling strategy (QTS) in training
FVSM for better camera controllability (Tab. 4). For stable
training and inference of FloVD, we adaptively normalize
optical flow maps based on statistics computed from the
training dataset, following Li et al. [19]. Refer to the sup-
plemental document for more implementation details.

5.2. Evaluation Protocol
Camera controllability. We employ the evaluation proto-
col of previous methods [11, 42] for the camera controllabil-
ity. Specifically, for an input image and camera parameters,
we first synthesize a video. We then estimate camera param-
eters from the synthesized video using GLOMAP [21], and
compare the estimated camera parameters against the input

parameters to evaluate how faithfully the synthesized video
follows the input camera parameters. For the evaluation
dataset, we sampled 1,000 video clips and their associated
camera parameters from the test set of RealEstate10K [43].

To evaluate estimated camera parameters against input
ones, we measure the mean rotation error (mRotErr), mean
translation error (mTransErr), and mean error in camera ex-
trinsic matrices (mCamMC), which are defined as:

mRotErr =
1

T

T∑
t=1

cos−1 tr(R̂tR
T
t)− 1

2
,

mTransErr =
1

T

T∑
t=1

∥τ̂t − τt∥, and

mCamMC =
1

T

T∑
t=1

∥[R̂t|τ̂t]− [Rt|τt]∥2,

(3)

where T is the number of video frames. R̂t and τ̂t are
the camera rotation matrix and translation vector estimated
from the t-th synthesized video frame, and Rt are τt are
their corresponding input rotation matrix and translation
vector, respectively.

Video synthesis quality. We evaluate the video synthe-
sis quality in terms of (1) sample quality and (2) object
motion synthesis quality. To evaluate the sample quality,
we first construct a benchmark dataset using 1,500 real-
world videos randomly sampled from the Pexels dataset [1],
which we refer to as ‘Pexels-random.’ To evaluate model’s
capability of diverse object motion synthesis, we construct
three benchmark video datasets with small, medium, and
large object motions, each containing 500 video clips with
minimal camera motions to avoid potential bias caused by
camera motion. The datasets are categorized based on the
average magnitudes of the optical flow vectors of moving
objects: smaller than 20 pixels (Pexels-small), between 20
and 40 pixels (Pexels-medium), and more than 40 pixels
(Pexels-large). More details on the benchmark datasets can
be found in the supplemental document.

To evaluate the video synthesis quality, we synthesize
videos using the first frames of videos in the aformen-
tioned benchmark datasets and compare these synthesized
videos with the datasets. While our method’s video synthe-
sis quality is minimally affected by these parameters, pre-
vious methods that synthesize video frames directly from
them might be more influenced. To account for this, we uti-
lize seven types of camera trajectories during video synthe-
sis: translation to the left, right, up, and down, as well as
zoom-in, zoom-out, and no camera motion (‘stop’). Conse-
quently, for all models, we generate seven videos for each
video included in the benchmark datasets. Finally, we eval-
uate the video synthesis performance of a given method
through the Frechet Video Distance (FVD) [29], Frechet
Image Distance (FID) [13], and Inception Score (IS) [24].

5

Camera
motion

In
pu

t i
m

ag
e

Camera
motion

C
am

er
aC

trl
M

ot
io

nC
trl

O
ur

s
G

ro
un

d
tru

th
In

pu
t i

m
ag

e

C
am

er
aC

trl
M

ot
io

nC
trl

O
ur

s
G

ro
un

d
tru

th
Figure 5. Qualitative comparison of camera control using the RealEstate10K test dataset [43]. MotionCtrl [33] often fails to follow the
input camera parameters. Notably, our method shows accurate camera control results despite not using camera parameters in training.

Training Data mRotErr (◦) mTransErr mCamMC
MotionCtrl RE10K 5.90 0.1610 0.1719
CameraCtrl RE10K 1.44 0.0927 0.0945
Ours RE10K 1.43 0.0869 0.0887
Ours Internal 1.79 0.0994 0.1018
Ours w/ OMSM RE10K 1.52 0.0971 0.0989
Ours w/ OMSM Internal 1.88 0.1042 0.1066

Table 1. Quantitative evaluation of camera controllability using the
RealEstate10K test dataset [43]. Our method shows superior cam-
era control performance against previous methods [11, 33], even
without using camera parameters in training.

5.3. Comparison

We compare our method with recent camera-controllable
video synthesis methods, MotionCtrl [33] and CameraC-
trl [11], both of which support detailed camera control by
taking camera parameters as input. Additional comparisons
with other methods that support basic camera movements
can be found in the supplemental document.

Camera controllability. We first compare the camera
controllability of our method against MotionCtrl [33] and
CameraCtrl [11]. Both MotionCtrl and CameraCtrl were
trained on RealEstate10K [43], which provides no object
motions but a wider range of camera motions than our
full dataset. For a comprehensive comparison, we evaluate
four versions of our model. Specifically, we train FVSM
on either our internal dataset or RealEstate10K, but without
utilizing the ground-truth camera parameters available in
RealEstate10K. We also include variants of our model with
and without OMSM as RealEstate10K contains only static
scenes without moving objects. In this evaluation, OMSM
is trained using our internal dataset.

As shown in Fig. 5, MotionCtrl [33] produces video
frames that do not accurately follow the input camera tra-

jectories due to its suboptimal camera parameter embedding
scheme. On the other hand, both CameraCtrl [11] and ours
accurately reflect the input camera parameters, and produce
video frames that closely resemble the ground-truth frames.

As reported in Tab. 1, our model trained on
RealEstate10K [43] outperforms both MotionCtrl and
CameraCtrl across all metrics. Moreover, our other models
show comparable performances to CameraCtrl, while using
the internal dataset and incorporating OMSM slightly in-
crease errors due to domain differences and object motions.
These results prove the effectiveness of our camera control
scheme based on optical flow.

Video synthesis quality. We also compare the video syn-
thesis quality of our method with previous ones [11, 33].
Fig. 6 shows a qualitative comparison, including X-t slices
to visualize pixel value changes over time, computed from
the positions marked by the red lines. In this compari-
son, we synthesize videos using camera parameters without
any motion, mainly to compare the video synthesis quality.
CameraCtrl [11] produces results with no object motions,
as shown in its X-t slices. MotionCtrl [33] produces arti-
facts with inconsistent foreground and background regions,
as marked by blue arrows. These artifacts result from the
limited generalization capability, since MotionCtrl updates
certain pre-trained parameters of the video diffusion model
during training. Unlike these methods, our method produces
high-quality videos with natural object motions.

The superior performance of our method is also evi-
denced by the quantitative comparison in Tab. 2. For the
Pexels-random dataset, our method reports better sample
quality against the previous methods [11, 33]. These results
prove that our method does not harm the video synthesis

6

Ours CameraCtrl MotionCtrl Ours CameraCtrl MotionCtrl

Fr
am

e
1

Fr
am

e
8

Fr
am

e
14

X-t
slice

Figure 6. Qualitative comparison of video synthesis quality. Video frames are synthesized with ’stop’ camera motion. X-t slice reveals how
pixel value changes over time along the horizontal red line. MotionCtrl [33] often fails to follow input camera trajectory and synthesizes
video frames with artifacts, due to the lack of generalization capability. CameraCtrl [11] frequently synthesizes motionless object in
generated videos. Our method synthesizes video frames with natural object motion while supporting precise camera control.

Pexels-random Pexels-small (< 20) Pexels-med. (< 40) Pexels-large (≥ 40)
FVD FID IS FVD FID IS FVD FID IS FVD FID IS

MotionCtrl 93.54 36.06 11.19 235.39 28.94 10.53 214.47 25.76 10.74 188.89 25.84 11.71
CameraCtrl 151.06 40.69 11.23 226.40 25.57 10.63 328.71 24.54 10.76 340.36 25.53 11.68
Ours 91.55 35.66 11.63 220.65 22.49 11.58 183.14 20.71 11.68 207.39 21.12 12.95

Table 2. Quantitative evaluation of video synthesis quality using
the Pexels dataset [1]. Our method shows superior video synthesis
performance against previous methods [11, 33].

quality of the pre-trained video diffusion model, compared
to the previous ones.

Our method also achieves better performances for the
benchmark datasets of object motion synthesis quality
(Pexels-small, Pexels-medium, and Pexels-large), as re-
ported in Tab. 2. While CameraCtrl exhibits significantly
degraded quality for large object motions (Pexels-large),
our method achieves substantially better results for all three
benchmark datasets. MotionCtrl often fails to follow input
camera parameters, synthesizing videos where the view-
point remains close to the input image. This may lead to
good FVD scores, as the synthesized videos align well with
the minimal camera movement present in most benchmark
videos. However, as shown in Fig. 6, MotionCtrl often pro-
duces visual artifacts in the synthesized videos. More visual
examples for these artifacts can be found in the additional
qualitative comparison of the supplemental document. Fur-
thermore, our method, which employs a timestep sampling
strategy from the EDM framework [16], outperforms previ-
ous methods across all metrics, as demonstrated in Tab. 3
and Tab. S1 of the supplemental document.

5.4. Further Analysis
Ablation study. We conduct an ablation study to verify
the effect of our main components: OMSM, and training
with a wide range of real-world videos, both of which are
made possible by our optical-flow-based framework. We
utilize our models trained with two different timestep sam-

X-t
slice

(a) Baseline (b) + OMSM (c) + Large-scale Data

Fr
am

e
1

Fr
am

e
14

Figure 7. Qualitative ablation with ’zoom-out’ camera motion. X-t
slice reveals pixel value changes along the horizontal red line.

Training Timestep Pexels-random
Data Strategy FVD (↓) FID (↓) IS (↑)

Baseline RE10K QTS 157.99 39.61 11.19
+ OMSM RE10K QTS 104.92 36.33 11.51
+ large-scale data Internal QTS 91.55 35.66 11.63

Baseline RE10K EDM 148.42 39.92 11.23
+ OMSM RE10K EDM 95.31 36.90 11.43
+ large-scale data Internal EDM 80.74 35.65 11.73

Table 3. Ablation study of our main components with the evalua-
tion of video synthesis quality using the Pexels-random dataset.

pling strategies for in-depth analysis under different set-
tings. In Fig. 7, the baseline model indicates a variant of
our model that has no OMSM (i.e., only FVSM) and is
trained on RealEstate10K [43]. ‘+ OMSM’ indicates a vari-
ant model with OMSM, while its FVSM is still trained on
RealEstate10K. OMSM is trained using our full and curated
datasets. ‘+ large-scale data’ is our final model where both
OMSM and FVSM are trained using our datasets.

As shown in Fig. 7(a), the baseline model does not syn-
thesize noticeable object motions. Introducing OMSM en-
ables our framework to generate object motion, but it also
occasionally produces artifacts for moving objects as shown
in Fig. 7(b). Our final model produces natural-looking ob-
ject motions without noticeable artifacts (Fig. 7(c)). Tab. 3
also shows similar trends that introducing each component
to our framework consistently improves evaluation metrics

7

Warped frames Synthesized frames

Figure 8. Explicit camera control. Our model can follow the
warped frames while handling artifacts such as holes, which are
caused by imperfect 3D structure estimation.

mRotErr (◦) mTransErr mCamMC
Ours w/ EDM 1.70 0.0983 0.1010
Ours w/ QTS 1.43 0.0869 0.0887

Table 4. Timestep sampling strategies for camera controllability.

for Pexels-random. Additional quantitative ablation study
can be found in Tab. S1 of the supplemental document.

Flow-conditioned video synthesis. Our method gener-
ates camera flow maps using the 3D structure estimated
from an input image, then feeds them to FVSM. To better
understand our framework, Fig. 8 presents visualizations of
warped images using the estimated 3D structure and camera
parameters, alongside their associated video synthesis re-
sults produced by FVSM. As shown in the figure, 3D-based
image warping may introduce distortions and holes, yet still
provides realistic-looking images. This result indicates that
leveraging the 3D structure can serve as a powerful hint for
camera-controllable video synthesis. Fig. 8 also shows that
our flow-conditioned video synthesis successfully produces
realistic-looking results that closely resemble the warping
results, but without artifacts such as distortions and holes.

Timestep sampling strategy. As stated in Sec. 5.1, we
adopt the quadratic timestep sampling strategy (QTS) for
better camera controllability, instead of the timestep sam-
pling strategy of the EDM framework [16] used in Sta-
ble Video Diffusion [3]. Our model using QTS shows
slightly compromised video synthesis quality compared to
our model using EDM (Tab. 3). Nevertheless, our model
with QTS still demonstrates better performance than the
previous methods (Tab. 2). Moreover, QTS enhances the
camera controllability of FVSM (Tab. 4). This improved
camera controllability results from increased chances of
training with highly noised data, allowing our model to
effectively leverage flow conditions for structural content
generation.

5.5. Applications
Temporally-consistent video editing. Our framework
using FVSM enables temporally-consistent video editing at
no extra cost. A video can be edited as follows. First, we
obtain optical flow maps from the video by using an off-
the-shelf optical flow estimator [28]. We then edit the first
frame of the input video using an off-the-shelf image edit-
ing tool, e.g., InfEdit [36]. We synthesize a video by using
FVSM with the edited first frame and estimated optical flow
maps as inputs. As shown in Fig. 9, this simple strategy us-

So
ur
ce

Vi
de
o

Ta
rg
et

Vi
de
o

Figure 9. Temporally-consistent video editing.

Frame 1 Frame 14Frame 8

Figure 10. Video synthesis results with the dolly zoom effect.

ing our framework can produce temporally-consistent video
editing results, thanks to our optical-flow-based approach.

Cinematic camera control. Thanks to its 3D-awareness,
our framework enables complex camera controls such as the
dolly zoom. The dolly zoom is a camera technique where
the camera moves forward while simultaneously adjusting
the zoom in the opposite direction. To achieve this, we syn-
thesize videos with control over both the camera’s intrinsic
and extrinsic parameters. Fig. 10 shows a synthesized video
with the dolly zoom effect, where the subject remains a sim-
ilar size while the background appears to converge inward.
Notably, our framework achieves this without being trained
on video datasets containing camera intrinsic parameters
that vary across frames.

6. Conclusion

This paper proposed FloVD, a novel optical-flow-based
video diffusion model for camera controllable video gener-
ation. Since existing methods require a training dataset with
ground-truth camera parameters, they are mainly trained
on the restricted datasets that primarily consist of static
scenes, leading to video synthesis with unnatural object mo-
tion. Unlike previous methods, our method leverages optical
flow maps to represent both camera and object motions, en-
abling the use of arbitrary training videos without ground-
truth camera parameters. Moreover, our method facilitates
detailed camera control by leveraging background motions
of optical flow, which encodes 3D correlation across differ-
ent viewpoints. Our extensive experiments demonstrate that
FloVD provides realistic video synthesis with natural object
motion and accurate camera control.

Limitations. Our method is not free from limitations. Er-
rors from both the object motion synthesis model and the
semantic segmentation model may result in unnatural ob-
ject motion in the synthesized videos. The estimation error
of segmentation model can be alleviated through user inter-
action by providing point prompts for object regions. Our
future work will involve a seamless integration of camera
and object motions to synthesize more natural videos.

8

Ethical considerations. FloVD is purely a research
project. Currently, we have no plans to incorporate FloVD
into a product or expand access to the public. We will also
put Microsoft AI principles into practice when further de-
veloping the models. In our research paper, we account for
the ethical concerns associated with video generation re-
search. To mitigate issues associated with training data, we
have implemented a rigorous filtering process to purge our
training data of inappropriate content, such as explicit im-
agery and offensive language, to minimize the likelihood of
generating inappropriate content.

References
[1] Pexels, royalty-free stock footage website. https://

www.pexels.com. Accessed: 2024-09-30. 4, 5, 7
[2] Sherwin Bahmani, Ivan Skorokhodov, Aliaksandr Siaro-

hin, Willi Menapace, Guocheng Qian, Michael Vasilkovsky,
Hsin-Ying Lee, Chaoyang Wang, Jiaxu Zou, Andrea
Tagliasacchi, et al. Vd3d: Taming large video diffu-
sion transformers for 3d camera control. arXiv preprint
arXiv:2407.12781, 2024. 1, 2

[3] Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel
Mendelevitch, Maciej Kilian, Dominik Lorenz, Yam Levi,
Zion English, Vikram Voleti, Adam Letts, et al. Stable
video diffusion: Scaling latent video diffusion models to
large datasets. arXiv preprint arXiv:2311.15127, 2023. 1,
3, 4, 5, 8

[4] Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dock-
horn, Seung Wook Kim, Sanja Fidler, and Karsten Kreis.
Align your latents: High-resolution video synthesis with la-
tent diffusion models. In CVPR, pages 22563–22575, 2023.

[5] Tim Brooks, Bill Peebles, Connor Holmes, Will DePue,
Yufei Guo, Li Jing, David Schnurr, Joe Taylor, Troy Luh-
man, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya
Ramesh. Video generation models as world simulators.
2024. 1

[6] Tsai-Shien Chen, Chieh Hubert Lin, Hung-Yu Tseng, Tsung-
Yi Lin, and Ming-Hsuan Yang. Motion-conditioned diffu-
sion model for controllable video synthesis. arXiv preprint
arXiv:2304.14404, 2023. 1, 2

[7] Michael Dorkenwald, Timo Milbich, Andreas Blattmann,
Robin Rombach, Konstantinos G Derpanis, and Bjorn Om-
mer. Stochastic image-to-video synthesis using cinns. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 3742–3753, 2021. 2

[8] Yuki Endo, Yoshihiro Kanamori, and Shigeru Kuriyama.
Animating landscape: self-supervised learning of decoupled
motion and appearance for single-image video synthesis.
arXiv preprint arXiv:1910.07192, 2019. 2

[9] Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang,
Yaohui Wang, Yu Qiao, Maneesh Agrawala, Dahua Lin,
and Bo Dai. Animatediff: Animate your personalized text-
to-image diffusion models without specific tuning. arXiv
preprint arXiv:2307.04725, 2023. 2

[10] Zekun Hao, Xun Huang, and Serge Belongie. Controllable
video generation with sparse trajectories. In Proceedings

of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 7854–7863, 2018. 2

[11] Hao He, Yinghao Xu, Yuwei Guo, Gordon Wetzstein, Bo
Dai, Hongsheng Li, and Ceyuan Yang. Cameractrl: Enabling
camera control for text-to-video generation. arXiv preprint
arXiv:2404.02101, 2024. 1, 2, 5, 6, 7

[12] Yingqing He, Tianyu Yang, Yong Zhang, Ying Shan, and
Qifeng Chen. Latent video diffusion models for high-fidelity
long video generation. arXiv preprint arXiv:2211.13221,
2022. 1

[13] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. Advances in neural information processing systems,
30, 2017. 5

[14] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William
Chan, Mohammad Norouzi, and David J Fleet. Video dif-
fusion models. Advances in Neural Information Processing
Systems, 35:8633–8646, 2022. 1

[15] Aleksander Holynski, Brian L Curless, Steven M Seitz, and
Richard Szeliski. Animating pictures with eulerian mo-
tion fields. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5810–
5819, 2021. 2

[16] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine.
Elucidating the design space of diffusion-based generative
models. Advances in neural information processing systems,
35:26565–26577, 2022. 4, 5, 7, 8

[17] Bingxin Ke, Anton Obukhov, Shengyu Huang, Nando Met-
zger, Rodrigo Caye Daudt, and Konrad Schindler. Repurpos-
ing diffusion-based image generators for monocular depth
estimation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 9492–
9502, 2024. 3

[18] Zhengfei Kuang, Shengqu Cai, Hao He, Yinghao Xu, Hong-
sheng Li, Leonidas Guibas, and Gordon Wetzstein. Col-
laborative video diffusion: Consistent multi-video genera-
tion with camera control. arXiv preprint arXiv:2405.17414,
2024. 1

[19] Zhengqi Li, Richard Tucker, Noah Snavely, and Aleksander
Holynski. Generative image dynamics. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 24142–24153, 2024. 2, 5

[20] Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian
Zhang, Zhongang Qi, and Ying Shan. T2i-adapter: Learning
adapters to dig out more controllable ability for text-to-image
diffusion models. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 4296–4304, 2024. 4, 5

[21] Linfei Pan, Dániel Baráth, Marc Pollefeys, and Johannes L
Schönberger. Global structure-from-motion revisited. In Eu-
ropean Conference on Computer Vision (ECCV), 2024. 5

[22] Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra,
Animesh Sinha, Ann Lee, Apoorv Vyas, Bowen Shi, Chih-
Yao Ma, Ching-Yao Chuang, et al. Movie gen: A cast of
media foundation models. arXiv preprint arXiv:2410.13720,
2024. 1, 2

[23] Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang
Hu, Chaitanya Ryali, Tengyu Ma, Haitham Khedr, Roman

9

https://www.pexels.com
https://www.pexels.com

Rädle, Chloe Rolland, Laura Gustafson, et al. Sam 2:
Segment anything in images and videos. arXiv preprint
arXiv:2408.00714, 2024. 3, 4

[24] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki
Cheung, Alec Radford, and Xi Chen. Improved techniques
for training gans. Advances in neural information processing
systems, 29, 2016. 5

[25] Xiaoyu Shi, Zhaoyang Huang, Fu-Yun Wang, Weikang Bian,
Dasong Li, Yi Zhang, Manyuan Zhang, Ka Chun Cheung,
Simon See, Hongwei Qin, et al. Motion-i2v: Consistent and
controllable image-to-video generation with explicit motion
modeling. In ACM SIGGRAPH 2024 Conference Papers,
pages 1–11, 2024. 1, 2

[26] Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An,
Songyang Zhang, Qiyuan Hu, Harry Yang, Oron Ashual,
Oran Gafni, et al. Make-a-video: Text-to-video generation
without text-video data. arXiv preprint arXiv:2209.14792,
2022. 1

[27] Vincent Sitzmann, Semon Rezchikov, Bill Freeman, Josh
Tenenbaum, and Fredo Durand. Light field networks: Neu-
ral scene representations with single-evaluation rendering.
Advances in Neural Information Processing Systems, 34:
19313–19325, 2021. 1, 2

[28] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field
transforms for optical flow. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–
28, 2020, Proceedings, Part II 16, pages 402–419. Springer,
2020. 2, 4, 8

[29] Thomas Unterthiner, Sjoerd Van Steenkiste, Karol Kurach,
Raphael Marinier, Marcin Michalski, and Sylvain Gelly. To-
wards accurate generative models of video: A new metric &
challenges. arXiv preprint arXiv:1812.01717, 2018. 5

[30] Vikram Voleti, Alexia Jolicoeur-Martineau, and Chris Pal.
Mcvd-masked conditional video diffusion for prediction,
generation, and interpolation. Advances in neural informa-
tion processing systems, 35:23371–23385, 2022. 2

[31] Yanhui Wang, Jianmin Bao, Wenming Weng, Ruoyu Feng,
Dacheng Yin, Tao Yang, Jingxu Zhang, Qi Dai, Zhiyuan
Zhao, Chunyu Wang, et al. Microcinema: A divide-and-
conquer approach for text-to-video generation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 8414–8424, 2024. 1

[32] Zhenzhi Wang, Yixuan Li, Yanhong Zeng, Youqing Fang,
Yuwei Guo, Wenran Liu, Jing Tan, Kai Chen, Tianfan Xue,
Bo Dai, et al. Humanvid: Demystifying training data for
camera-controllable human image animation. arXiv preprint
arXiv:2407.17438, 2024. 1

[33] Zhouxia Wang, Ziyang Yuan, Xintao Wang, Yaowei Li, Tian-
shui Chen, Menghan Xia, Ping Luo, and Ying Shan. Mo-
tionctrl: A unified and flexible motion controller for video
generation. In ACM SIGGRAPH 2024 Conference Papers,
pages 1–11, 2024. 1, 2, 6, 7

[34] Dejia Xu, Yifan Jiang, Chen Huang, Liangchen Song,
Thorsten Gernoth, Liangliang Cao, Zhangyang Wang, and
Hao Tang. Cavia: Camera-controllable multi-view video
diffusion with view-integrated attention. arXiv preprint
arXiv:2410.10774, 2024.

[35] Dejia Xu, Weili Nie, Chao Liu, Sifei Liu, Jan Kautz,
Zhangyang Wang, and Arash Vahdat. Camco: Camera-
controllable 3d-consistent image-to-video generation. arXiv
preprint arXiv:2406.02509, 2024. 1, 2

[36] Sihan Xu, Yidong Huang, Jiayi Pan, Ziqiao Ma, and Joyce
Chai. Inversion-free image editing with natural language.
arXiv preprint arXiv:2312.04965, 2023. 8

[37] Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiao-
gang Xu, Jiashi Feng, and Hengshuang Zhao. Depth any-
thing v2. arXiv preprint arXiv:2406.09414, 2024. 3

[38] Shiyuan Yang, Liang Hou, Haibin Huang, Chongyang Ma,
Pengfei Wan, Di Zhang, Xiaodong Chen, and Jing Liao.
Direct-a-video: Customized video generation with user-
directed camera movement and object motion. In ACM SIG-
GRAPH 2024 Conference Papers, pages 1–12, 2024. 1, 2

[39] Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu
Huang, Jiazheng Xu, Yuanming Yang, Wenyi Hong, Xiao-
han Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video
diffusion models with an expert transformer. arXiv preprint
arXiv:2408.06072, 2024. 1

[40] Shengming Yin, Chenfei Wu, Jian Liang, Jie Shi, Houqiang
Li, Gong Ming, and Nan Duan. Dragnuwa: Fine-grained
control in video generation by integrating text, image, and
trajectory. arXiv preprint arXiv:2308.08089, 2023. 1, 2

[41] David Junhao Zhang, Roni Paiss, Shiran Zada, Nikhil Kar-
nad, David E Jacobs, Yael Pritch, Inbar Mosseri, Mike Zheng
Shou, Neal Wadhwa, and Nataniel Ruiz. Recapture: Gener-
ative video camera controls for user-provided videos using
masked video fine-tuning. arXiv preprint arXiv:2411.05003,
2024. 1

[42] Guangcong Zheng, Teng Li, Rui Jiang, Yehao Lu, Tao Wu,
and Xi Li. Cami2v: Camera-controlled image-to-video dif-
fusion model. arXiv preprint arXiv:2410.15957, 2024. 1, 2,
5

[43] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,
and Noah Snavely. Stereo magnification: Learning
view synthesis using multiplane images. arXiv preprint
arXiv:1805.09817, 2018. 1, 2, 5, 6, 7

10

	. Introduction
	. Related Work
	. Camera-Controllable Video Synthesis
	. Object Motion Synthesis

	. FloVD Framework
	. Flow Generation
	. Flow-Conditioned Video Synthesis

	. FloVD Training
	. Training Datasets
	. Training Object Motion Synthesis
	. Training Flow-Conditioned Video Synthesis

	. Experiments
	. Implementation Details
	. Evaluation Protocol
	. Comparison
	. Further Analysis
	. Applications

	. Conclusion

