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1 OVERVIEW
In this Supplemental Document, we provide implementation details
and additional qualitative results. Specifically, we present:

• pretraining details of EG3D,
• our detailed network architecture,
• additional analysis of our deformation-aware network,
• additional training details,
• domain adaptation of the compared methods,
• details on GAN inversion,
• visual examples of limitation, and
• additional results.

2 PRETRAINING OF EG3D
For domain adaptation, we pretrain an EG3D model [Chan et al.
2021a] on 25M real portrait images in the FFHQ dataset [Karras
et al. 2019]. Since our primal interest lies in 3D-aware drawing
synthesis, we reduce the network to generate 256 × 256 images for
faster training/testing.

3 NETWORK ARCHITECTURE
Pose-estimation network. We use a pretrained ResNet50 network

[He et al. 2016] as a backbone of our pose-estimation network. We
replace the last fully-connected layer for classification with another
fully-connected layer for pose estimation.
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Deformation network. We modulate the 2D convolutional fea-
ture maps of the generator’s coarse layers using our deformation
network. We sample a deformation code 𝑧𝑑 ∈ 𝑅256 from the nor-
mal distribution. The deformation code is then converted into a
feature 𝑤𝑑 ∈ 𝑅256 through our deformation network consisting
of four fully-connected layers with 256 hidden layers. An affine-
transformation layer then transforms𝑤𝑑 into 1D modulation code
with the length of𝐻𝑊 +𝐷 , where𝐻 ,𝑊 and𝐷 are the height, width
and number of channels of original 2D convolutional feature maps,
respectively. We separate the modulation code into two tensors
with the respective lengths of 𝐻𝑊 and 𝐷 . We obtain residual fea-
ture maps with the size of 𝐻 ×𝑊 × 𝐷 from the two tensors with
the size of 𝐻 ×𝑊 × 1 and 1 × 1 ×𝐷 via broadcasting. We modulate
the feature maps of the coarse layers at the resolutions of 8 × 8,
16 × 16, and 32 × 32 with feature dimension 𝐷 = 512.

Image synthesis. Our StyleGAN-based generator [Karras et al.
2020b] synthesizes 2D convolutional features, which are fed to a
volumetric renderer. Then, we obtain an image and a depth map of
resolution of 64 × 64. High-resolution images with size 256 × 256
are then synthesized via a 2D convolutional upsampler.

Discriminator with pose condition. We use an estimated pose 𝜃 as
a prior for the conditioned discriminator 𝐷 following StyleGAN2-
ADA [Karras et al. 2020a]. The 25-dimensional pose condition is
composed of rearranged intrinsic and extrinsic matrices. An in-
trinsic matrix is constructed using a focal length, and an extrinsic
matrix is obtained from the estimated camera pose 𝜃 . Then, this
pose condition is fed to eight fully-connected layers and modulates
the discriminator’s features.

4 ADDITIONAL ANALYSIS ON
DEFORMATION-AWARE NETWORK

The ablation study in Figure 7 in the main paper shows that the
deformation-aware network helps improve the quality of synthe-
sized geometries. It is because the deformation-aware network
helps retain the original weights of the generator so that the knowl-
edge about 3D structures of the original network can be better
preserved for challenging styles such as anime [Anonymous et al.
2019]. Figure 1 visualizes the amounts of weight parameter changes
in the feature generator caused by the adaptation process with and
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historical art anime

Figure 1: Amounts of weight parameter changes in the feature generator caused by the adaptation process with and without
the deformation-aware network. The first convolutional layer (b4_conv0) is omitted because it is fixed for stable adaptation in
both styles.

without the deformation-aware network. In the case of the histori-
cal art domain, which is closer to the original real human portrait
domain than the anime domain, both adaptations with and without
the deformation-aware network cause a similar amount of weight
changes. On the other hand, in the case of anime domain, adapta-
tion without the deformation-aware network causes large weight
changes due to the large domain gap, which may lead to the lose of
the knowledge learned in the original generator. In contrast, the
deformation-aware network clearly helps suppress weight changes
as shown in the figure.

5 TRAINING DETAILS
Adversarial Learning. We adapt the deformation-aware 3D syn-

thesis network 𝐺 from human faces to drawings via adversarial
training. The pose-estimation network 𝑃 estimates the pose 𝜃 of
a real image 𝑥real. A fake image 𝑥fake is then synthesized by our
generator 𝐺 with a latent code 𝑧 and a deformation code 𝑧𝑑 at the
camera pose 𝜃 . We train the deformation-aware 3D synthesis net-
work by minimizing the discrepancy between fake and real image
distributions with an adversarial loss L𝑎 using the discriminator
𝐷 :
L𝑎 (𝐷,𝐺) = E𝑧∼𝑝𝑧 , 𝑧𝑑∼𝑝𝑧𝑑 [f (𝐷 (𝐺 (𝑧, 𝑧𝑑 , 𝜃 )))]

+ E𝑥real∼𝑝𝑑𝑎𝑡𝑎 [f (−𝐷 (𝑥real, 𝜃 )) + 𝜆 |∇𝐷 (𝑥real, 𝜃 )) |2],
(1)

where 𝑝data is the distribution of real images, f (𝑢) = − log(1 +
exp(−𝑢)), and 𝜆 = 1.0. The latent code 𝑧 and deformation code
𝑧𝑑 are sampled from normal distributions 𝑝𝑧 and 𝑝𝑧𝑑 . During the
training of our synthesis network, we freeze the first convolutional
layer of the feature generator for stable training.

Hyperparameters. In our experiments, we adapt 3D GAN from
real portraits to the drawing datasets of historical art [Karras et al.
2019], ukiyo-e [Pinkney and Adler 2020], anime [Anonymous et al.
2019] and caricature [Huo et al. 2017]. For the weights (𝛼 , 𝛽 , 𝛾 ), we
use (3.0, 2.5, 10) for the historical-art dataset, (2.0, 2.0, 10) for the

ukiyo-e dataset, (1.5, 1.0, 10) for the anime dataset, and (3.0, 1.5, 10)
for the caricature dataset. We run domain adaptation on 800K im-
ages for the historical-art and ukiyo-e datasets, and 400K images for
the other datasets. We use learning rates of 0.00125 and 0.00075 for
the deformation-aware 3D synthesis network and the discriminator.
We set the learning rate as 0.0000125 for the mapping network
and the deformation network. A learning rate of 0.0000075 is used
for the pose-condition network of the discriminator. In our exper-
iments, we use 8 NVIDIA RTX 3090 GPUs and the training takes
8.71 hours for metfaces and ukiyo-e. For the anime and caricature
datasets, it took 4.36 hours for training.

6 DOMAIN ADAPTATION OF BASELINE
METHODS

We compare Dr.3D with recent 3D GANs (𝜋-GAN and StyleNeRF
[Chan et al. 2021b; Gu et al. 2021]), a parametric fitting method
(DECA [Feng et al. 2021]) and physics-based decomposition meth-
ods (Unsup3D, GAN2Shape [Pan et al. 2021; Wu et al. 2020]). We
adapt all the models from real human portraits to drawings [Anony-
mous et al. 2019; Huo et al. 2017; Karras et al. 2020a; Pinkney 2020]
except for DECA since a parametric model is not available for
drawings.

𝜋-GAN. Wefirst retrain a pretrainedmodel of 𝜋-GAN [Chan et al.
2021b] on FFHQ [Karras et al. 2019] with 7.2M images, improving
its synthesis capability. We then perform domain adaptation of the
retrained 𝜋-GAN model to drawings using 360K, 480K, 720K, and
600K iterations for historical-art, ukiyo-e, caricature, and anime,
until the model converges.

StyleNeRF. For StyleNeRF [Gu et al. 2021], we also use the author-
provided model pretrained on FFHQ. We adapt this model to draw-
ings with 400K, 800K, 600K and 800K iterations for historical-art,
ukiyo-e, caricature, and anime until the model converges.

2



Dr.3D: Adapting 3D GANs to Artistic Drawings SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea

Figure 2: Limitations of Dr.3D. Dr.3Dmay sometimes produce
flattened geometries for some latent codes of challenging
target domains such as anime.

Unsup3D. We adapt an Unsup3D [Wu et al. 2020] model pre-
trained on CelebA [Liu et al. 2015] to drawings.We trained Unsup3D
with 90K, 300K, 300K and 90K training iterations for historical-art,
ukiyo-e, caricature, and anime until the model converges.

GAN2Shape. Since GAN2Shape [Pan et al. 2021] needs a pre-
trained StyleGAN2 model, we were only able to adapt its model
to the historical-art dataset. The adaptation was done on a model
pretrained with CelebA [Liu et al. 2015].

7 DETAILS ON GAN INVERSION
Dr.3D. We first use an off-the-shelf face detector [King 2009] to

find the face region in a target drawing. Then, we align the drawing
and crop it to the resolution of 256×256. We then use pivotal tuning
inversion (PTI) [Roich et al. 2021] to find a latent code𝑤 , pose 𝜃 , and
deformation code 𝑧𝑑 that reconstruct the input image best using
our generator. We first run the optimization for 500 iterations. For
additional 350 iterations, we fix the latent code𝑤 and only optimize
the deformation code 𝑧𝑑 by finetuning our deformation-aware 3D
synthesis network 𝐺 .

𝜋-GAN. 𝜋-GAN [Chan et al. 2021b] uses FiLM-SiREN structure
which has the parameters of frequency and phase-shift. To recon-
struct an input drawing using 𝜋-GAN, we optimize frequency,
phase-shift, and rendering pose for 1000 iterations. As the ren-
dering pose of the drawing is not available in the 𝜋-GAN setting,
we use the estimated pose from our pose-estimation network for
initialization. Note that the author-provided inversion code did not
work in our experiments.

StyleNeRF. Since StyleNeRF [Gu et al. 2021] adopts similar ar-
chitecture to StyleGAN2 [Karras et al. 2020b], we use the same
inversion method of PTI [Roich et al. 2021]. We set the initial pose
using our pose-estimation network. Latent code and rendering pose
are optimized for 500 iterations, followed by generator tuning for
additional 350 iterations.

8 LIMITATION EXAMPLES
Although Dr.3D outperforms previous methods, it may sometimes
produce degenerate flattened geometries for some latent codes for
challenging domains such as anime characters. Figure 2 shows such
an example.

9 ADDITIONAL RESULTS
Here, we provide additional results comparing Dr.3D with other
baseline methods. Figure 3 shows reconstructed images and shapes
for the metfaces dataset [Karras et al. 2019] using DECA [Feng
et al. 2021], Unsup3D [Wu et al. 2020], GAN2Shape [Pan et al.
2021], 𝜋-GAN [Chan et al. 2021b], styleNeRF [Gu et al. 2021] and
Dr.3D.We extract the 3D shapes using themarching-cube algorithm.
Figure 4 shows another comparison on the ukiyo-e, caricature,
anime datasets [Anonymous et al. 2019; Huo et al. 2017; Pinkney
2020]. DECA fails to synthesize realistic shapes since it requires
a parametric model which is not available for drawings. 𝜋-GAN
and StyleNeRF suffer from distortion artifacts due to the lack of
3D knowledge of drawings. Our method outperforms the other
methods in image fidelity and shape quality.

Figure 5 presents a qualitative comparison of randomly synthe-
sized images of 𝜋-GAN [Chan et al. 2021b], StyleNeRF [Gu et al.
2021] and Dr.3D. For all drawing styles, Dr.3D shows the best syn-
thesized results with clear and high-quality images.

Multi-view images with variable yaw angles can be synthesized
by Dr.3D with fixed latent code 𝑧 and deformation code 𝑧𝑑 . Figures
7 and 6 show multi-view drawing synthesis results of 3D GAN
baselines [Chan et al. 2021b; Gu et al. 2021] and Dr.3D. 𝜋-GAN
results in low-quality images at steep angles. StyleNeRF suffers
from flattened shapes. Dr.3D effectively covers the large shape
deformation of drawings by expanding representation power using
our deformation-aware 3D synthesis network.
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(c) Unsup3D(b) DECA

(a) Input

(d) GAN2Shape (e) 𝜋𝜋-GAN (f) StyleNeRF (g) Ours

Figure 3: Qualitative comparison of reconstruction results. Input: Portrait of Giuseppe Ceracchi, 1792 by John Trumbull, Yale
University Art Gallery [Public Domain] via (https://bit.ly/3KbMRjc).

(b) DECA (c) Unsup3D (d) 𝜋-GAN (e) StyleNeRF (f) Ours(a) Input

Figure 4: Qualitative comparison of reconstruction results. Input (top): A Beauty of The Kyoho Era, 1897 by Toyohara Chikanobu,
Arthur M. Sackler Gallery [Fair Use] via (https://s.si.edu/3ewrtth).
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Figure 5: Qualitative comparison of randomly synthesized images.

𝜋𝜋-GAN StyleNeRF Ours

Figure 6: Drawing synthesis with different pitch angles. Dr.3D can synthesize higher-quality multi-view consistent drawings
than the other 3D GAN baselines.
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Figure 7: Drawing synthesis with different yaw angles. Dr.3D can synthesize higher-quality multi-view consistent drawings
than the other 3D GAN baselines.
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