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Figure 1: GAN inversion and semantic editing examples on a portrait drawing. For comparison, we perform naïve domain
adaptation to 𝜋-GAN [Chan et al. 2021] and StyleNeRF [Gu et al. 2022] by finetuning them on portrait drawings. Then, we
invert the input image in (a) using an off-the-shelf GAN inversion method to a latent code and reconstruct the image and its
shape at a different camera pose using each 3D GANmodel. The results in (b) and (c) show that naïve adaptations of existing 3D
GANs fail to handle the input drawing. On the other hand, our method can successfully reconstruct the input image, and also
allow semantic editing as shown in (d) and (e). Image in (a): Portrait of a Member of the Wedigh Family, 1532 by Hans Holbein
the Younger, WikiArt [Public Domain] via (https://bit.ly/3KfgKPI)

ABSTRACT
While 3D GANs have recently demonstrated the high-quality syn-
thesis of multi-view consistent images and 3D shapes, they are
mainly restricted to photo-realistic human portraits. This paper
aims to extend 3D GANs to a different, but meaningful visual form:
artistic portrait drawings. However, extending existing 3D GANs
to drawings is challenging due to the inevitable geometric ambigu-
ity present in drawings. To tackle this, we present Dr.3D, a novel
adaptation approach that adapts an existing 3D GAN to artistic
drawings. Dr.3D is equipped with three novel components to han-
dle the geometric ambiguity: a deformation-aware 3D synthesis
network, an alternating adaptation of pose estimation and image
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synthesis, and geometric priors. Experiments show that our ap-
proach can successfully adapt 3D GANs to drawings and enable
multi-view consistent semantic editing of drawings.
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1 INTRODUCTION
Generative adversarial networks (GANs) [Goodfellow et al. 2014]
have achieved remarkable success in learning to synthesize realistic
images, which is crucial for a plethora of applications in computer
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graphics and vision [Karras et al. 2019, 2020b]. Notably, GANs
allow us to explore synthesized images and edit real images in a
semantically meaningful way [Shen et al. 2020; Shen and Zhou
2021; Wu et al. 2021]. Among many image categories that GAN
methods have dealt with, it is not surprising that the human face is
one of the most popular targets in computer graphics and vision.
Recently, making GANs aware of 3D geometry has received great
attention, opening up an exciting research field of 3D GANs. They
tackle the ill-posed problem of learning the 3D-aware distribution
of real images by explicitly modeling 3D light transport between
a camera and a target object. 3D GANs enable the synthesis and
editing of photographs not only in a semantically meaningful way,
but also in consideration of 3D scene geometry [Chan et al. 2022,
2021; Gu et al. 2022; Niemeyer and Geiger 2021; Zhou et al. 2021].

To date, 3D GANs have been mainly demonstrated only on real-
world photographs, which are the exact recordings of real-world
scenes through perspective cameras. In this paper, we aim to extend
the capability of 3D GANs to handle a different, but meaningful
visual form: drawing. Drawing plays a crucial role in human history
by depicting both real-world and imaginary subjects with intended
and/or unintended variations. Existing 2D GANmethods have been
extended to cope with drawings by adapting 2D GANs pretrained
on real-world photographs into drawings, so-called domain adapta-
tion [Isola et al. 2017; Karras et al. 2020a; Ojha et al. 2021; Zhu et al.
2017]. The adaptation strategy exploits common features between
photographs and drawings, allowing us to bring the synthesis and
editing capability of 2D GANs to the drawing domain [Wu et al.
2022]. Unfortunately, extending 3D GANs to the drawing domain
turns out to be more challenging as shown in Figure 1.

One fundamental reason for this difficulty is that drawings have
intrinsic geometric ambiguity on the subject and camera pose.
Artists intentionally or unintentionally assume nondeterministic
geometry of subjects from an imaginary viewpoint deviating from
the physical one, resulting in drawing with creative ambiguity. This
further increases the ill-posedness of learning a 3D-aware image
distribution of drawings and hinders the direct application of pre-
vious domain adaptation methods used in 2D GANs for 3D GAN
methods. Figure 1 shows that the application of state-of-the-art 3D
GANs [Chan et al. 2021; Gu et al. 2022] on drawings via domain
adaptation fails to synthesize faithful 3D-consistent images.

This paper proposes Dr.3D, a novel 3D GAN domain adaptation
method for portrait drawings. Dr.3D effectively handles the funda-
mental geometric ambiguity of drawings with three remedies. First,
we present a deformation-aware 3D synthesis network suitable for
learning a large distribution of diverse shapes in drawing. Second,
we propose an alternating adaptation scheme for 3D-aware image
synthesis and pose estimation, effectively reducing the learning
complexity of ambiguous 3D geometries and camera poses in draw-
ings. Third, we impose geometric priors that enable stable domain
adaptation from real photographs to drawings. The resulting do-
main adaptation method, Dr.3D, is the first method that enables
stable editing and synthesis of drawing images in a 3D consistent
way. We validate the effectiveness of Dr.3D via extensive quantita-
tive and qualitative evaluations.

2 RELATEDWORKS
3D-aware GANs. Several recent works have extended 2D GANs

to be aware of the 3D structures of subjects and camera poses. Voxel-
based 3D GANs [Nguyen-Phuoc et al. 2019] directly represent 3D
structures with 3D voxel grids parameterized by 3D convolutional
neural networks. Unfortunately, they typically suffer from large
memory requirements. Mesh-based GANs [Liao et al. 2020; Szabó
et al. 2019] lift the memory problem by using sparse meshes as a
geometric representation. However, dealing with such sparse primi-
tives with neural networks is challenging due to their unstructured
data types. Recently, implicit 3D GANs [Chan et al. 2022, 2021; Gu
et al. 2022; Niemeyer and Geiger 2021; Schwarz et al. 2020] have
shown promising performance in terms of image fidelity and 3D
consistency. GRAF and 𝜋-GAN [Chan et al. 2021; Schwarz et al.
2020] first proposed to learn to generate neural radiance fields
(NeRF) [Mildenhall et al. 2020] and synthesize images via differ-
entiable volumetric rendering. Since then, several attempts have
been made to further improve the synthesis quality by incorporat-
ing feature projection and upsampling with the expense of losing
multi-view consistency [Gu et al. 2022; Niemeyer and Geiger 2021].
Most recently, EG3D [Chan et al. 2022] demonstrates the synthesis
of high-resolution 3D-aware images based on a tri-plane represen-
tation and a StyleGAN generator [Karras et al. 2020b]. Albeit great
progress has been made in 3D GANs, directly applying them to
drawings fails to learn meaningful 3D structures due to the large
domain gap between real photographs and drawings (Figure 1).

Photo-to-Drawing Domain Adaptation. Applying GANs to draw-
ings has often been practiced via domain adaptation in the 2D
image space where we first train a GAN model on real photographs,
and then finetune the model on a drawing dataset. This domain-
adaptation technique has achieved notable success in synthesiz-
ing high-fidelity drawing images. Moreover, the adapted models
inherit the semantically-meaningful editing capability of previ-
ous 2D GANs, thus enabling semantic editing of drawing images.
Thus, their applications span the diverse computer graphics and
vision fields, resulting in new applications such as image cartooniza-
tion [Pinkney and Adler 2020; Yang et al. 2022] and automatic
caricature generation [Jang et al. 2021].

However, extending the success of 2D GANs to 3D GANs has
been challenging. Drawings have ambiguous and diverse geometric
shapes and appearances, resulting in a large domain gap between
real photographs and drawings as witnessed by recent works [Gu
et al. 2022]. Typical failure examples are flattened 3D shapes, in-
consistent multi-view images, and low-fidelity images as shown
in Figure 6. We aim to overcome this hurdle by proposing a 3D
domain adaptation method designed explicitly for drawings and
demonstrates compelling results via our stable photo-to-drawing
domain adaptation.

Non-generative 3D-aware Image Editing. Editing an input im-
age considering its 3D structure can be also done without using
generative models. For instance, fitting a 3D parametric shape
model [Blanz and Vetter 1999; Li et al. 2017; Paysan et al. 2009]
to an image allows us to have a geometrically-editable 3D model
textured with the image [Deng et al. 2019; Feng et al. 2021]. Sty-
leRig [Tewari et al. 2020] propose combining 3DMM parameters
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Figure 2: Network architecture of a deformation-aware 3D
synthesis network. The network consists of a deformation
network, a mapping network, a feature generator, and a vol-
ume rendering module. The network takes latent codes 𝑧𝑑
and 𝑧, and a camera pose parameter 𝜃 as inputs, and synthe-
sizes an image in a multi-view consistent way.

with semantic features learned in 2D GANs for image editing. Un-
fortunately, parametric shape models are not applicable to drawings
as the diverse 3D geometries in drawings often deviate from the
representation space of existing parametric shape models. Another
research direction is to reconstruct the 3D geometry of an input
image based on the physics-based priors of light transport, where
Unsup3d [Wu et al. 2020], GAN2Shape [Pan et al. 2021], and Style-
GANRender [Zhang et al. 2021] show promising results. However,
these methods often fail to handle drawings, because of their restric-
tive physics-based priors that assume the accurate decomposition
of an image into illumination, appearance, and shape, which does
not hold in drawings.

3 BACKGROUND ON EG3D
Before introducing our approach, we first provide a brief review of
the network architecture of EG3D [Chan et al. 2022], a state-of-the-
art 3D GAN network upon which our network is built. Specifically,
it starts with a randomly sampled GAN latent code 𝑧, which turns
into 2D convolutional features after passing through a StyleGAN-
based feature generator [Karras et al. 2019]. Generated 2D feature
maps are then rearranged into 3D orthogonal feature planes, from
which any 3D point can be described with the projected features.
Given the features, a multi-layer perceptron (MLP) decoder pre-
dicts the color and density of a 3D point, which are subsequently
used for volume rendering, resulting in an image 𝑥fake and a depth
map 𝑑𝑓 𝑎𝑘𝑒 at a camera pose 𝜃 . The feature generator and the MLP
decoder are trained using a discriminator 𝐷 , which is conditioned
with the input camera pose 𝜃 to promote the generator to synthe-
size images that accurately reflect the camera pose. In contrast to
being successful as a 3D GANmodel for realistic portrait images, di-
rectly applying EG3D to drawings results in catastrophic failures as
shown in Figure 7, due to the fundamental ambiguity in drawings.

4 DOMAIN ADAPTATION TO DRAWINGS
Built upon EG3D [Chan et al. 2022], Dr.3D is equipped with three
remedies that mitigate the ill-posedness of photo-to-drawing 3D-
aware domain adaptation: (1) a deformation-aware 3D synthesis
network, (2) an alternating adaptation scheme for image synthesis
and pose estimation, and (3) geometric priors for adaptation to
drawing. In this section, we introduce each remedy in detail.
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Figure 3: Network architectures of a generator and a deforma-
tion network. The generator network is based on the Style-
GAN2 generator [Karras et al. 2020b]. FC: a fully-connected
(FC) layer. A: an affine layer consisting of a single FC layer.
Mod: a modulation layer. Demod: a demodulation layer.

4.1 Deformation-aware 3D Synthesis
Drawings may have local shape variations that do not exist in pho-
tographs taken by cameras. To handle such domain gaps effectively,
we introduce a deformation-aware 3D synthesis network 𝐺 . Our
network architecture builds on top of the EG3D network as shown
in Figure 2. To model diverse shape deformations in drawings, our
network uses an additional latent code 𝑧𝑑 . The deformation code 𝑧𝑑
turns into residual features via an MLP-based deformation network
as shown in Figure 3, which are then added to early convolutional
features in the StyleGAN feature generator. Note that modulating
early layers in a StyleGAN generator is known to provide large-
scale changes to synthesized images [Jang et al. 2021; Yang et al.
2022]. This simple feature-modulation strategy allows us to model
diverse shape variations in drawings.

The role of the deformation-aware network is twofold. First, it
introduces additional dimensions to the latent space so that local
shape variations that may uniquely exist in target artistic drawing
domains can be more effectively handled. Second, the residual fea-
tures generated by the deformation-aware network help model the
domain gap between the source and target domains more effectively.
Specifically, as the mapping network is an MLP and the generator
consists of spatially-invariant convolution operations, finetuning
them cannot effectively model local deformations. To resolve this,
our deformation-aware network estimates spatially-variant resid-
ual features to better handle local feature differences between the
source and target domains. Moreover, the residual features help
retain the original weights of the generator so that the knowledge
about 3D structures learned in the original networks can be bet-
ter preserved for more successful domain adaptation. Refer to the
Supplemental Document for implementation details and additional
analysis of the deformation network.

4.2 Alternating Adaptation of Pose Estimation
and Image Synthesis

EG3D [Chan et al. 2022], which our method builds upon, requires
known camera poses associated with input training images for
its training. While camera poses for real portraits can be readily
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estimated using an off-the-shelf pose estimation network [Deng
et al. 2019; Feng et al. 2021], it is not trivial to obtain camera poses
for portrait drawings. Previous pose estimation networks trained
on real portraits fail on drawings due to the large domain gap,
and there exist no datasets with ground-truth poses of drawings
to train a pose estimation network. To tackle this problem, we
may also adapt a pose-estimation network trained on portrait pho-
tos to drawings so that we can estimate the poses of drawings to
train a synthesis network. However, adapting a pose-estimation
network and a 3D synthesis network is a chicken-and-egg problem.
Adapting a pose-estimation network requires training data with
ground-truth pose labels, which can be obtained by an adapted 3D
synthesis network, while adapting a 3D synthesis network requires
an accurately adapted pose-estimation network.

To resolve this, we propose an alternating adaptation approach
that alternatingly updates the 3D synthesis network 𝐺 and pose-
estimation network 𝑃 (Fig. 4). Specifically, at each iteration of the
alternating adaptation, we synthesize a pseudo ground-truth dataset
using the current 𝐺 , and update 𝑃 using the synthesized dataset.
Then, using the updated 𝑃 , we estimate the poses of the real draw-
ings in a training dataset and update 𝐺 using the estimated poses.
In this way, we can progressively adapt both 𝑃 and 𝐺 to a target
drawing domain. However, at early iterations of the alternating
adaptation, the poses of training images are not accurately esti-
mated by 𝑃 due to the large domain gap, which may eventually
lead to the failure of adaptation. To overcome this, we introduce
training losses with geometric priors, which will be described in
Section 4.3, to guide the adaptation process. In the following, we
describe each step of our alternating adaptation in more detail.

Adapting 3D Synthesis Network. Given an input drawing 𝑥real as
a training sample, we estimate its camera pose 𝜃 using a fixed pose
estimation network. With the estimated pose 𝜃 , our 3D synthesis
network 𝐺 generates an image 𝑥fake and its corresponding depth
map 𝑑fake. To adapt 𝐺 , we employ the adversarial loss L𝑎 of the
original EG3D [Chan et al. 2022], which is based on a conditional
discriminator 𝐷 . Specifically, 𝐷 takes either a synthetic or real
image, 𝑥fake or 𝑥real, with its corresponding camera pose 𝜃 and
evaluates how realistic it is. We update both𝐺 and𝐷 an adversarial-
learning manner by back-propagating the loss. However, using the
adversarial loss alone is not enough as there is no guarantee that
the camera pose 𝜃 is accurate especially at early iterations of the
alternating adaptation. Inaccurate pose estimation typically leads
to learning flattened geometries for drawings as shown in Figure
7. To address this issue, we introduce an additional loss L𝑔 based
on geometric priors, described in Section 4.3. The 3D synthesis
network 𝐺 is then updated by minimizing a loss defined as:

L = L𝑎 (𝑥fake, 𝑥real, 𝜃 ) + L𝑔 (𝑥fake, 𝑑fake, 𝜃 ) . (1)

Adapting Pose-estimation Network. We adapt the pose-estimation
network 𝑃 while fixing the 3D synthesis network𝐺 . To adapt 𝑃 , we
first generate a pseudo training dataset Ω that consists of multiple
pairs of randomly sampled camera poses 𝜃 and their corresponding
images 𝑥𝜃fake. We synthesize 𝑥𝜃fake as 𝑥

𝜃
fake = 𝐺 (𝑧, 𝜃 ) where 𝑧 is a

randomly sampled GAN latent code. On the pseudo dataset, we

finetune our pose-estimation network 𝑃 by minimizing the pose-
estimation loss L𝑝 defined as:

L𝑝 =
1
|Ω |

∑︁
{𝜃,𝑥𝜃fake }∈Ω

𝜃 − 𝑃 (𝑥𝜃fake)
2
2
. (2)

As our deformation-aware 3D synthesis network 𝐺 continuously
adapts to a drawing domain thanks to the adversarial and geometric-
prior-based losses, our pose-estimation network 𝑃 can coordinately
adapt to a drawing domain through alternating adaptation.

4.3 Additional Losses with Geometric Priors
In order to guide the alternating adaptation process to a proper
solution, the loss L𝑔 is defined as a combination of three losses:

L𝑔 = 𝛼L𝑑 + 𝛽L𝑛 + 𝛾L𝑝 , (3)

where 𝛼 , 𝛽 and𝛾 are balancing weights.L𝑑 is a depth similarity loss,
L𝑛 is a normal smoothness loss, and L𝑝 is a pose loss defined in
Equation (2). The pose loss L𝑝 guides the 3D synthesis network to
synthesize an image that matches the input camera pose 𝜃 . L𝑑 and
L𝑛 correspond to geometric priors that guide𝐺 to synthesize a valid
3D geometry and an image correctly reflecting the input camera
pose 𝜃 . In the following, we describe geometric priors L𝑑 and
L𝑛 in detail, and discuss how the loss terms guide the alternating
adaptation process to a proper solution.

Depth Similarity Loss. Even though portrait drawings have in-
trinsic geometric ambiguity, there are still similarities between
drawings and real photographs because the category of subjects is
still the same as human face. This incurs our first observation: the
geometry of a subject depicted in a drawing is similar to the geom-
etry in a photograph at a high level. We implement such prior by
penalizing the low-frequency difference between the depth of a syn-
thesized drawing 𝑑fake and that of a synthesized photo 𝑑fake,photo:

L𝑑 =
𝑘 ∗ 𝑑fake − 𝑘 ∗ 𝑑fake,photo

2
2 , (4)

where 𝑘 is a 15 × 15-sized Gaussian low-pass filter of standard
deviation 5. We use a synthesis network 𝐺photo trained on real
FFHQ photos [Karras et al. 2019] to generate its depth 𝑑fake,photo =

𝐺photo (𝑧, 𝜃 ). Note that latent code 𝑧 and pose 𝜃 are the ones used
for the drawing sample: 𝑑fake = 𝐺 (𝑧, 𝜃 ).

Normal Smoothness Loss. We further penalize abrupt changes of
a synthesized geometry, which is implemented as a loss function:

L𝑛 = ∥∇𝑛fake∥22, (5)

where∇ is the spatial gradient operator and𝑛fake is a surface normal
map computed from a synthesized depth map 𝑑fake.

Effect on Alternating Adaption. The additional losses are crucial
in guiding the alternating adaptation toward a proper solution. At
early iterations of the alternating adaptation process, the 3D syn-
thesis network 𝐺 produces images that are close to real portrait
images. As the pose estimation network 𝑃 can accurately estimate
the camera poses of such synthesized images at early iterations, the
pose lossL𝑝 can enforce𝐺 to produce images of the correct camera
poses. On the other hand, the depth similarity loss L𝑑 promotes
𝐺 to synthesize 3D geometries that are close to their correspond-
ing source-domain geometries. As the source-domain geometries
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Figure 4: Alternating adaptation. Our approach alternatingly adapts the deformation-aware 3D synthesis network and the
pose-estimation network. 𝑥real: Portrait of Benjamin Moore McVickar, 1825 by Charles Cromwell Ingham, MetMuseum [Public
Domain] via (https://bit.ly/3c9skiy).

Figure 5: 3D-aware drawing synthesis results of our 3D synthesis network adapted to different datasets by Dr.3D (from left to
right: historical art, ukiyo-e, caricature, and anime).

have valid geometric structures and correctly reflect the camera
poses, L𝑑 guides𝐺 to synthesize valid unflattened geometries that
correctly reflect the camera poses during the entire adaptation
process. Finally, L𝑛 helps avoid degenerate 3D structures with
high-frequency artifacts. Thanks to the pose loss and geometric
priors, the 3D synthesis network can be adequately adapted without
drifting to an improper solution, which also helps the adaptation
of the pose-estimation network.

4.4 Training Details
We pretrain the 3D synthesis network𝐺 and the pose-estimation
network 𝑃 on the real portrait images of the FFHQ dataset [Karras
et al. 2019]. We apply horizontal flip for data augmentation. We
use the Adam optimizer [Kingma and Ba 2014] with learning rates
of 0.0001 and 0.00125 for optimizing 𝑃 and 𝐺 , respectively. The
learning rate for the discriminator 𝐷 is 0.00075. The 3D synthesis
and pose-estimation networks 𝐺 and 𝑃 are alternatively trained
within a mini-batch of 32 images. We freeze the first 10 layers of the
discriminator 𝐷 for stable domain adaptation [Mo et al. 2020]. We
use the weights 𝛼 , 𝛽 and 𝛾 differently for target drawing domains
as provided in the Supplemental Document.

5 ASSESSMENT
We conduct extensive validation of our method on four datasets
of different drawing styles: historical art [Karras et al. 2020a],
ukiyo-e [Pinkney 2020], anime [Anonymous et al. 2019], and carica-
ture [Huo et al. 2018]. For the anime dataset, we crop and align face
regions using an off-the-shelf face detection method [King 2009].
We apply Dr.3D to each dataset and obtain an adapted 3D GAN
model separately. Figure 5 shows curated examples of 3D-aware
drawing synthesis for the different drawing styles, demonstrating
our 3D-aware synthesis capability for diverse drawing styles. Refer
to the Supplemental Document for uncurated results.

5.1 Comparison
We compare Dr.3D to recent GAN-based 3D synthesis methods:
StyleNeRF [Gu et al. 2022],𝜋-GAN [Chan et al. 2021] and EG3D [Chan
et al. 2022]. In the case of EG3D, we directly adapt EG3D from real
photos to artistic drawings using camera poses estimated by an
off-the-shelf pose-estimation network [Feng et al. 2021]. For the
results of parametric fitting [Feng et al. 2021] and physics-based
decomposition methods [Pan et al. 2021; Wu et al. 2020], refer to the
Supplemental Document. Figure 6 shows a qualitative comparison
between previous 3D GANs and ours. Naïve domain adaptation of
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(a) StyleNeRF (c) EG3D(b) 𝜋-GAN (d) Dr.3D

Figure 6: Qualitative comparison among StyleNeRF [Gu et al. 2022], 𝜋-GAN [Chan et al. 2021], EG3D [Chan et al. 2022] and
ours. The contents of the images are different as they are generated by differently trained generator models. StyleNeRF, 𝜋-GAN
and EG3D produce corrupted 3D geometries and unnatural-looking images especially for challenging styles such as ukiyo-e
and anime, while our method produces more plausible shapes and images.

the previous 3D GANs fails to handle diverse drawing shapes and
appearances, resulting in low-fidelity images and flattened geome-
tries. Dr.3D reconstructs plausible shapes and images of drawing,
outperforming the previous methods.

We further conduct quantitative analysis on the fidelity of syn-
thesized images and shapes. The qualities of synthesized images
are evaluated using FID [Heusel et al. 2017] and KID [Bińkowski
et al. 2018]. We use 256 × 256-sized images for all the methods
except 𝜋-GAN, for which we use 128 × 128-sized images due to its
large memory requirement. Table 1 shows the evaluation results
where Dr.3D achieves the best image-synthesis fidelity except for
caricatures, thanks to our effective adaptation scheme.

Quantitative evaluation of synthesized shapes mandates the
ground-truth shapes of drawings, which are challenging to obtain
in most cases. For the historical-art dataset, as done in EG3D [Chan
et al. 2022], we obtain the pseudo ground-truth shapes and poses of
randomly generated drawings using a parametric fitting method
[Feng et al. 2021]. We measure depth and pose error by calculating
MSE between generated sets and pseudo ground-truth depths and
poses. For the evaluation of caricatures, we utilize the 3DCaricShop
dataset, which provides paired images and 3D shapes created by
artists. We reconstruct caricature images using GAN-inversion and
measure depth and pose error with ground-truth geometries.

Table 2 shows that Dr.3D generally performs better than the other
methods in terms of shapes and poses. While StyleNeRF achieves
better depth accuracy than ours for the historical-art dataset, it
shows the worst pose accuracy. Also, while the table shows that

Table 1: Quantitative comparison on the image quality
among 𝜋-GAN [Chan et al. 2021], StyleNeRF [Gu et al. 2022],
EG3D [Chan et al. 2022] and ours.

Hist. art Ukiyo-e Anime Caricature
𝜋-GAN FID ↓ 46.40 65.91 48.78 73.25

KID ×103 ↓ 26.14 53.79 28.29 52.15
StyleNeRF FID ↓ 34.99 58.52 27.94 22.53

KID ×103 ↓ 14.51 58.72 12.41 11.72
EG3D FID ↓ 26.95 40.16 20.75 15.71

KID ×103 ↓ 9.295 32.94 8.699 7.123
Dr.3D FID ↓ 23.42 37.38 18.74 19.69
(Ours) KID ×103 ↓ 5.916 29.65 6.335 9.180

EG3D achieves comparable results to ours, it tends to produce noisy
and flattened shapes as shown in Figure 6.

5.2 Ablation Study
Dr.3D effectively deals with the intrinsic ambiguity of drawing
images by means of (1) a deformation-aware 3D synthesis network,
(2) alternating adaptation of pose estimation and image synthesis,
and (3) geometric priors. We assess the impact of each component
by starting with our baseline network, EG3D [Chan et al. 2022].
Figure 7 shows an ablation result. Using the original EG3Dmodel on
drawings results in a flattened shape (Figure 7(a)). For training the
EG3D model, we used the camera pose estimated from an off-the-
shelf pose-estimation network [Feng et al. 2021]. Our alternating
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Table 2: Quantitative comparison on the shape and pose qual-
ity among 𝜋-GAN [Chan et al. 2021], StyleNeRF [Gu et al.
2022], EG3D [Chan et al. 2022] and Dr.3D.

Hist. art Caricature
Depth Pose Depth Pose

𝜋-GAN 0.305 0.072 0.151 0.077
StyleNeRF 0.169 0.333 0.688 0.326
EG3D 0.215 0.054 0.033 0.047

Dr.3D (Ours) 0.217 0.030 0.020 0.070

(a) Baseline (b) + Alternating 
adaptation

(d) + Geometric 
priors

(c) + Deformation-
aware 3D synthesis 

network

Figure 7: Ablation study. The baseline model (EG3D [Chan
et al. 2022]) synthesizes a distorted image and a flattened
geometry as shown in (a). While our alternating adaptation
helps avoid flattened shapes as shown in (b), our deformation-
aware 3D synthesis network, and geometric priors further
improve the synthesis quality.

Figure 8: Image synthesis results from different deformation
codes 𝑧𝑑 . For all the results, the same latent code 𝑧 is used.

adaptation of the pose-estimation network and the deformation-
aware 3D synthesis network enables us to recover a better 3D
geometry (Figure 7(b)). Adding our deformation-aware 3D synthesis
network further improves the shape-reconstruction fidelity and the
quality of synthesized images as it helps capture shape and style
variations in drawings (Figure 7(c)). Our full method, Dr.3D, with
the geometric priors, results in the best synthesis quality for both
image and shape (Figure 7(d)).

As discussed in Section 4.1, drawings have a larger distribution
of potentially-feasible 3D shapes than photos. Our deformation
network helps model such a larger distribution of drawings by ex-
panding the representation space with an additional latent code
𝑧𝑑 , which leads to higher-quality adaptation results as shown in

Input Novel-view images synthesized with Dr.3D

Figure 9: Novel view synthesis of a real-world drawing. Input:
Girl with a Pearl Earring, 1665 by Johannes Vermeer,WikiArt
[Public Domain] via (https://bit.ly/3PE66CT).

(a) Input (b) Novel view (c) Editing

Figure 10: Semantic editing of input drawings. Top: male
to female. Bottom: hairstyle change. Input on the top row:
Gulian Verplanck, 1771 by John Singleton Copley, WikiArt
[Public Domain] via (https://bit.ly/3PE6vVV).

Figure 7(c). Figure 8 shows another example of the deformation
network. In the figure, while the same latent code 𝑧 synthesizes all
the images, they exhibit different details due to different deforma-
tion codes 𝑧𝑑 , proving the larger representation space expanded by
the deformation network. More analysis on the deformation-aware
network is provided in the Supplemental Document.

5.3 3D-aware Semantic Editing of Drawing
Combining GAN inversion with Dr.3D enables multi-view consis-
tent editing of real-world drawings such as novel-view synthesis
and semantic editing. Figure 9 shows examples of novel-view syn-
thesis of real-world drawings. In these examples, we estimate the
camera poses of the input images using our domain-adapted pose-
estimation network and invert the images to GAN latent codes
using the pivotal tuning inversion method [Roich et al. 2021]. Then,
we synthesize novel views of the input images by feeding their
latent codes and new camera poses to the 3D synthesis network.

Dr.3D also enables multi-view consistent semantic editing on
real-world drawings. Figure 10 shows examples of semantic edit-
ing. In these examples, we use editing vectors found by applying
InterfaceGAN [Shen et al. 2020] using the original EG3D network
trained on the FFHQ dataset.
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6 CONCLUSION
This paper presented Dr.3D, a novel 3D GAN adaptation method
from real portraits to artistic drawings. To handle the intrinsic geo-
metric ambiguity of drawings, we proposed alternating adaptation
of the pose estimation and image synthesis, a deformation-aware
network, and geometric priors. We experimentally validated that
our approach can successfully adapt 3D GANs to drawings for the
first time. Dr.3D allows to edit an artistic drawing in consideration
of its 3D geometric structure and semantics of the content.

Limitations. While Dr.3D can produce superior results to pre-
vious methods, it may still produce flattened geometries for some
latent codes for challenging domains such as anime. Refer to the Sup-
plemental Document for a failure example. Also, our method is lim-
ited in dealing with the background region in which 3D-consistent
shared geometric features do not exist in training images. We note
that this limitation also applies to existing 3D-GANmethods includ-
ing EG3D [Chan et al. 2022]. One potential way to resolving this
would be to divide the feature-generation procedure into two: one
for the foreground and the other for the background [Gu et al. 2022].
Extending Dr.3D to diverse target domains including non-human
faces would also be an interesting future direction.
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